suncalc-ts
Version:
A tiny JavaScript library for calculating sun/moon positions and phases.
360 lines (304 loc) • 9.84 kB
text/typescript
/*
(c) 2011-2015, Vladimir Agafonkin
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
https://github.com/mourner/suncalc
*/
// shortcuts for easier to read formulas
const PI = Math.PI,
sin = Math.sin,
cos = Math.cos,
tan = Math.tan,
asin = Math.asin,
atan = Math.atan2,
acos = Math.acos,
rad = PI / 180;
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
// date/time constants and conversions
const dayMs = 1000 * 60 * 60 * 24,
J1970 = 2440588,
J2000 = 2451545;
function toJulian(date: Date): number {
return date.valueOf() / dayMs - 0.5 + J1970;
}
function fromJulian(j: number): Date {
return new Date((j + 0.5 - J1970) * dayMs);
}
function toDays(date: Date): number {
return toJulian(date) - J2000;
}
// general calculations for position
const e = rad * 23.4397; // obliquity of the Earth
function rightAscension(l: number, b: number): number {
return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l));
}
function declination(l: number, b: number): number {
return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l));
}
function azimuth(H: number, phi: number, dec: number) {
return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi));
}
function altitude(H: number, phi: number, dec: number): number {
return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H));
}
function siderealTime(d: number, lw: number): number {
return rad * (280.16 + 360.9856235 * d) - lw;
}
function astroRefraction(h: number): number {
if (h < 0) {
// the following formula works for positive altitudes only.
h = 0; // if h = -0.08901179 a div/0 would occur.
}
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
}
// general sun calculations
function solarMeanAnomaly(d: number): number {
return rad * (357.5291 + 0.98560028 * d);
}
function eclipticLongitude(M: number): number {
const C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
P = rad * 102.9372; // perihelion of the Earth
return M + C + P + PI;
}
function sunCoords(d: number): { dec: number; ra: number } {
const M = solarMeanAnomaly(d),
L = eclipticLongitude(M);
return {
dec: declination(L, 0),
ra: rightAscension(L, 0),
};
}
export type PositionData = {
azimuth: number;
altitude: number;
};
// calculates sun position for a given date and latitude/longitude
export function getPosition(date: Date, lat: number, lng: number): PositionData {
const lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = sunCoords(d),
H = siderealTime(d, lw) - c.ra;
return {
azimuth: azimuth(H, phi, c.dec),
altitude: altitude(H, phi, c.dec),
};
}
// sun times configuration (angle, morning name, evening name)
const times: Array<[number, string, string]> = [
[-0.833, "sunrise", "sunset"] as [number, string, string],
[-0.3, "sunriseEnd", "sunsetStart"] as [number, string, string],
[-6, "dawn", "dusk"] as [number, string, string],
[-12, "nauticalDawn", "nauticalDusk"] as [number, string, string],
[-18, "nightEnd", "night"] as [number, string, string],
[6, "goldenHourEnd", "goldenHour"] as [number, string, string],
];
// adds a custom time to the times config
export function addTime(angle: number, riseName: string, setName: string): void {
times.push([angle, riseName, setName]);
}
// calculations for sun times
const J0 = 0.0009;
function julianCycle(d: number, lw: number): number {
return Math.round(d - J0 - lw / (2 * PI));
}
function approxTransit(Ht: number, lw: number, n: number): number {
return J0 + (Ht + lw) / (2 * PI) + n;
}
function solarTransitJ(ds: number, M: number, L: number): number {
return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L);
}
function hourAngle(h: number, phi: number, d: number) {
return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d)));
}
// returns set time for the given sun altitude
function getSetJ(h: number, lw: number, phi: number, dec: number, n: number, M: number, L: number): number {
const w = hourAngle(h, phi, dec),
a = approxTransit(w, lw, n);
return solarTransitJ(a, M, L);
}
export type TimesData = {
solarNoon: Date;
nadir: Date;
sunrise: Date;
sunset: Date;
sunriseEnd: Date;
sunsetStart: Date;
dawn: Date;
dusk: Date;
nauticalDawn: Date;
nauticalDusk: Date;
nightEnd: Date;
night: Date;
goldenHourEnd: Date;
goldenHour: Date;
} & { [key: string]: Date };
// calculates sun times for a given date and latitude/longitude
export function getTimes(date: Date, lat: number, lng: number): TimesData {
const lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
n = julianCycle(d, lw),
ds = approxTransit(0, lw, n),
M = solarMeanAnomaly(ds),
L = eclipticLongitude(M),
dec = declination(L, 0),
Jnoon = solarTransitJ(ds, M, L);
let i, len, time, Jset, Jrise;
const result = {
solarNoon: fromJulian(Jnoon),
nadir: fromJulian(Jnoon + 0.5),
} as TimesData;
for (i = 0, len = times.length; i < len; i += 1) {
time = times[i];
Jset = getSetJ(time[0] * rad, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise);
result[time[2]] = fromJulian(Jset);
}
return result;
}
// moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
function moonCoords(d: number): {
ra: number;
dec: number;
dist: number;
} {
// geocentric ecliptic coordinates of the moon
const L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
M = rad * (134.963 + 13.064993 * d), // mean anomaly
F = rad * (93.272 + 13.22935 * d), // mean distance
l = L + rad * 6.289 * sin(M), // longitude
b = rad * 5.128 * sin(F), // latitude
dt = 385001 - 20905 * cos(M); // distance to the moon in km
return {
ra: rightAscension(l, b),
dec: declination(l, b),
dist: dt,
};
}
export type MoonPositionData = {
azimuth: number;
altitude: number;
distance: number;
parallacticAngle: number;
};
export function getMoonPosition(date: Date, lat: number, lng: number): MoonPositionData {
const lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = moonCoords(d),
H = siderealTime(d, lw) - c.ra;
let h = altitude(H, phi, c.dec);
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
const pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
h = h + astroRefraction(h); // altitude correction for refraction
return {
azimuth: azimuth(H, phi, c.dec),
altitude: h,
distance: c.dist,
parallacticAngle: pa,
};
}
export type MoonIlluminationData = { fraction: number; phase: number; angle: number };
// calculations for illumination parameters of the moon,
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
export function getMoonIllumination(date: Date): MoonIlluminationData {
const d = toDays(date || new Date()),
s = sunCoords(d),
m = moonCoords(d),
sdist = 149598000, // distance from Earth to Sun in km
phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) - cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
return {
fraction: (1 + cos(inc)) / 2,
phase: 0.5 + (0.5 * inc * (angle < 0 ? -1 : 1)) / Math.PI,
angle: angle,
};
}
function hoursLater(date: Date, h: number): Date {
return new Date(date.valueOf() + (h * dayMs) / 24);
}
export type MoonTimesData = {
rise?: Date;
set?: Date;
alwaysUp?: boolean;
alwaysDown?: boolean;
};
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
export function getMoonTimes(date: Date, lat: number, lng: number, inUTC: boolean): MoonTimesData {
const t = new Date(date);
if (inUTC) {
t.setUTCHours(0, 0, 0, 0);
} else {
t.setHours(0, 0, 0, 0);
}
const hc = 0.133 * rad;
let h0 = getMoonPosition(t, lat, lng).altitude - hc,
h1,
h2,
rise,
set,
a,
b,
xe,
ye!: number,
d,
roots,
x1!: number,
x2!: number,
dx;
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
for (let i = 1; i <= 24; i += 2) {
h1 = getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
h2 = getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
a = (h0 + h2) / 2 - h1;
b = (h2 - h0) / 2;
xe = -b / (2 * a);
ye = (a * xe + b) * xe + h1;
d = b * b - 4 * a * h1;
roots = 0;
if (d >= 0) {
dx = Math.sqrt(d) / (Math.abs(a) * 2);
x1 = xe - dx;
x2 = xe + dx;
if (Math.abs(x1) <= 1) {
roots++;
}
if (Math.abs(x2) <= 1) {
roots++;
}
if (x1 < -1) {
x1 = x2;
}
}
if (roots === 1) {
if (h0 < 0) {
rise = i + x1;
} else {
set = i + x1;
}
} else if (roots === 2) {
rise = i + (ye < 0 ? x2 : x1);
set = i + (ye < 0 ? x1 : x2);
}
if (rise && set) {
break;
}
h0 = h2;
}
const result = {} as MoonTimesData;
if (rise) {
result.rise = hoursLater(t, rise);
}
if (set) {
result.set = hoursLater(t, set);
}
if (!rise && !set) {
result[ye > 0 ? "alwaysUp" : "alwaysDown"] = true;
}
return result;
}