UNPKG

stack-performance

Version:

A comprehensive application stack analyzer that evaluates MEAN, MERN, and other Node.js-based applications across 15 performance criteria

218 lines (170 loc) • 7.54 kB
# Stack Performance Analyzer A comprehensive Node.js application stack analyzer that evaluates MEAN, MERN, and other Node.js-based applications across 15 performance criteria using sophisticated algorithms rather than random scoring. ## Features šŸ” **Comprehensive Analysis**: Evaluates applications across 15 key performance criteria: 1. **Application Performance** - Framework efficiency, code structure, caching 2. **Developer Productivity** - Tooling support, learning curve, community 3. **API Response Time** - Framework efficiency, database optimization 4. **Learning Curve** - Documentation quality, complexity assessment 5. **Security Features** - Authentication, validation, vulnerability analysis 6. **Tooling & Ecosystem Support** - Development tools integration 7. **Integration with MongoDB** - Database connectivity and optimization 8. **Modularity & Scalability** - Code organization and scalability patterns 9. **Package Ecosystem** - Dependency management and quality 10. **Startup Time** - Application bootstrap performance 11. **Maintenance and Debugging** - Code maintainability metrics 12. **Hosting and Deployment Flexibility** - Deployment options assessment 13. **Memory & CPU Efficiency** - Resource utilization analysis 14. **Performance under Concurrent Load** - Scalability assessment 15. **Monitoring and Observability** - Logging and monitoring capabilities šŸŽÆ **Algorithmic Scoring**: Uses sophisticated algorithms to analyze: - Code complexity and patterns - Dependency analysis - Framework characteristics - Security implementations - Performance optimizations šŸ“Š **Detailed Reporting**: Provides: - Individual criterion scores (0–100) - Performance remarks (Excellent, Best, Good, Average, Poor) - Overall weighted score - Specific recommendations for improvement - Stack detection (MEAN, MERN, Express.js, etc.) ## Installation ```bash # Install dependencies npm install # (Optional) Make CLI globally available npm link # Add the following script in your project's package.json # so you can run the analyzer with npm # Inside package.json "scripts": { "analyze": "node node_modules/stack-performance-analyzer/index.js" } ## Usage ### Command Line Interface # Analyze current directory using CLI directly node node_modules/stack-performance-analyzer/index.js # Analyze specific project node node_modules/stack-performance-analyzer/index.js /path/to/your/project # Save results to JSON file node node_modules/stack-performance-analyzer/index.js . --save results.json # Show verbose output node node_modules/stack-performance-analyzer/index.js . --verbose # Output as JSON node node_modules/stack-performance-analyzer/index.js . --output json ``` ### Using npm script After adding the "analyze" script to your package.json, run: # Runs the analyzer using npm script npm run analyze ### Programmatic Usage ```javascript const ApplicationAnalyzer = require('./index'); const analyzer = new ApplicationAnalyzer({ projectPath: '/path/to/project' }); analyzer.analyze() .then(results => { console.log('Analysis complete!'); console.log('Overall Score:', results.overall.score); console.log('Performance:', results.overall.remark); // Individual criterion results results.criteria.forEach(criterion => { console.log(`${criterion.name}: ${criterion.score}/100 (${criterion.remark})`); }); }) .catch(error => { console.error('Analysis failed:', error); }); ``` ## How It Works ### Algorithmic Approach This analyzer uses **sophisticated algorithms** rather than random number generation: 1. **Stack Detection**: Analyzes `package.json` to identify technology stack 2. **Weighted Scoring**: Each criterion has specific weight based on importance 3. **Multi-Factor Analysis**: Each criterion evaluates multiple factors: - Code structure and complexity - Dependency analysis - Configuration file analysis - Best practice pattern detection - Security implementation analysis ### Example Analysis Process **Application Performance (12% weight)**: - Framework Performance (30%): Analyzes framework choice and characteristics - Code Structure (25%): Evaluates code complexity and patterns - Database Integration (20%): Checks for optimization patterns - Asset Management (15%): Build tools and optimization - Caching Implementation (10%): Caching strategy analysis **Security Features (9% weight)**: - Authentication (30%): JWT, Passport, session management - Data Validation (25%): Input validation libraries and patterns - Security Headers (20%): Helmet, CORS implementation - Vulnerability Assessment (25%): Dependency security analysis ## Sample Output ``` šŸ“Š STACK PERFORMANCE ANALYSIS RESULTS ============================================================ Application Performance | 87/100 | Best Developer Productivity | 92/100 | Excellent API Response Time | 78/100 | Good Learning Curve | 85/100 | Best Security Features | 71/100 | Good Tooling & Ecosystem Support | 88/100 | Best Integration with MongoDB | 82/100 | Best Modularity & Scalability | 76/100 | Good Package Ecosystem | 84/100 | Best Startup Time | 73/100 | Good Maintenance and Debugging | 79/100 | Good Hosting and Deployment | 81/100 | Best Memory & CPU Efficiency | 75/100 | Good Performance under Load | 77/100 | Good Monitoring and Observability | 69/100 | Average ------------------------------------------------------------ OVERALL PERFORMANCE | 80/100 | Best āœ… Analysis Complete šŸ”§ Detected Stack Information: Stack Type: MERN Technologies: MongoDB, Express.js, React, Node.js Node.js Version: 18.17.0 ``` ## Supported Stacks - **MEAN Stack** (MongoDB, Express.js, Angular, Node.js) - **MERN Stack** (MongoDB, Express.js, React, Node.js) - **Express.js Applications** - **Fastify Applications** - **Koa Applications** - **React Applications** - **Vue.js Applications** - **Generic Node.js Applications** ## Architecture ``` ā”œā”€ā”€ analyzers/ # Individual criterion analyzers │ ā”œā”€ā”€ BaseAnalyzer.js # Base class with common functionality │ ā”œā”€ā”€ ApplicationPerformanceAnalyzer.js │ ā”œā”€ā”€ DeveloperProductivityAnalyzer.js │ └── ... (15 total analyzers) ā”œā”€ā”€ lib/ │ └── StackAnalyzer.js # Main analyzer coordination ā”œā”€ā”€ bin/ │ └── cli.js # Command line interface ā”œā”€ā”€ index.js # Main entry point └── package.json # Project configuration ``` ## Contributing 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit your changes (`git commit -m 'Add some AmazingFeature'`) 4. Push to the branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request ## License This project is licensed under the MIT License - see the LICENSE file for details. ## Changelog ### v1.0.0 - Initial release with 15 comprehensive analysis criteria - Algorithmic scoring system (no random numbers) - Support for major Node.js stacks (MEAN, MERN, etc.) - CLI and programmatic interfaces - Detailed reporting with recommendations ### AUTHOR Gugan M K