sqlserver-mcp-colossal
Version:
MCP Server for SQL Server database operations with comprehensive CRUD functionality, views, stored procedures, execution plan analysis, and safety features
300 lines (238 loc) • 12.5 kB
Markdown
# Complete Features Documentation
## Overview
The SQL Server MCP Colossal (v1.2.0) is a comprehensive Model Context Protocol server that provides full-featured SQL Server database operations through Claude Desktop and other MCP clients.
## 🚀 Core Features
### 1. Database Connection Management
- **Multiple Configuration Methods**: Environment variables, JSON config files, or runtime configuration
- **ODBC Driver Support**: Compatible with ODBC Driver 17, 13, and legacy SQL Server drivers
- **Connection Security**: Encrypted connections with certificate validation
- **Connection Pooling**: Efficient connection management for high-volume operations
- **Cross-Platform**: Windows, Linux, and macOS support
### 2. Comprehensive CRUD Operations
- **Create (INSERT)**: Insert single or multiple records with JSON data
- **Read (SELECT)**: Query data with flexible WHERE clauses and limits
- **Update (UPDATE)**: Modify existing records with safety confirmations
- **Delete (DELETE)**: Remove records with safety confirmations
- **Parameterized Queries**: Protection against SQL injection
- **Transaction Support**: Full transaction management capabilities
### 3. Database Schema Exploration
- **Table Discovery**: List all tables in the database
- **Table Structure**: Detailed column information, data types, constraints
- **View Management**: Complete view support with structure analysis
- **Stored Procedure Support**: Full stored procedure operations
- **Schema Navigation**: Multi-schema database support
### 4. Advanced Query Features
- **Custom SQL Execution**: Execute any SQL query with parameters
- **Execution Plan Analysis**: XML plan parsing with optimization recommendations
- **Performance Monitoring**: Query execution time tracking
- **Result Set Management**: Flexible data retrieval with limits
- **Error Handling**: Comprehensive error reporting and recovery
## 🔒 Safety Features
### 1. Confirmation Requirements
- **UPDATE Operations**: Require explicit confirmation to prevent accidental data modification
- **DELETE Operations**: Require explicit confirmation to prevent accidental data deletion
- **Safety Warnings**: Clear warnings before destructive operations
- **Operation Preview**: Shows exactly what will be modified before execution
### 2. Input Validation
- **Pydantic Models**: Comprehensive type safety for all inputs
- **JSON Validation**: Ensures proper data format for all JSON parameters
- **Parameter Validation**: Validates all tool parameters before execution
- **Error Prevention**: Catches common mistakes before database operations
### 3. Security Measures
- **SQL Injection Protection**: Parameterized queries prevent injection attacks
- **Connection Security**: Encrypted connections with certificate validation
- **Access Control**: Respects SQL Server user permissions
- **Audit Logging**: Comprehensive operation logging for security monitoring
## 📊 Data Management Tools
### 1. Table Operations
- **list_tables**: Discover all tables in the database
- **describe_table**: Get detailed table structure information
- **get_table_data**: Retrieve data with flexible filtering and limits
- **insert_data**: Add new records with JSON data
- **update_data**: Modify existing records (with confirmation)
- **delete_data**: Remove records (with confirmation)
### 2. View Operations
- **list_views**: Discover all views in the database
- **describe_view**: Get detailed view structure and definition
- **get_view_data**: Retrieve data from views with filtering
### 3. Stored Procedure Operations
- **list_stored_procedures**: Discover all stored procedures
- **describe_stored_procedure**: Get procedure details, parameters, and definition
- **execute_stored_procedure**: Execute procedures with parameter support
## 🔍 Performance Analysis
### 1. Query Execution Plan Analysis
- **XML Plan Parsing**: Detailed analysis of SQL Server execution plans
- **Cost Analysis**: Estimated vs actual costs and row counts
- **Optimization Recommendations**: Prioritized suggestions for query improvement
- **Performance Metrics**: Execution time, resource usage, and efficiency metrics
### 2. Performance Monitoring
- **Execution Time Tracking**: Monitor query performance over time
- **Resource Usage**: Track CPU, memory, and I/O usage
- **Bottleneck Identification**: Identify performance issues and optimization opportunities
- **Trend Analysis**: Track performance improvements and regressions
## 🛠️ Development Features
### 1. Type Safety
- **Pydantic Integration**: Full type safety with automatic validation
- **Field Validators**: Custom validation rules for all inputs
- **Error Handling**: Comprehensive error reporting with helpful messages
- **IDE Support**: Full IntelliSense and type checking support
### 2. Testing Support
- **Comprehensive Test Suite**: 55+ tests covering all functionality
- **Mock Support**: Easy testing with mocked database connections
- **Validation Testing**: Tests for all Pydantic models and validators
- **Integration Testing**: End-to-end testing of all MCP tools
### 3. Code Quality
- **Code Formatting**: Black and isort for consistent code style
- **Type Checking**: MyPy for static type analysis
- **Linting**: Comprehensive code quality checks
- **Documentation**: Extensive documentation with examples
## 📚 Documentation Features
### 1. Comprehensive Guides
- **Quick Start Guide**: Get up and running in minutes
- **Safety Features Guide**: Detailed safety documentation
- **Execution Plan Guide**: Query optimization best practices
- **Features Documentation**: Complete feature reference
### 2. Examples and Tutorials
- **Real-World Examples**: Practical examples for common scenarios
- **Best Practices**: Industry best practices for database operations
- **Troubleshooting Guide**: Common issues and solutions
- **Performance Tips**: Optimization strategies and techniques
### 3. API Documentation
- **Tool Reference**: Complete reference for all MCP tools
- **Parameter Documentation**: Detailed parameter descriptions
- **Return Value Documentation**: Complete output format documentation
- **Error Code Reference**: Comprehensive error handling guide
## 🔧 Configuration Features
### 1. Flexible Configuration
- **Environment Variables**: Secure credential management
- **Configuration Files**: JSON-based configuration
- **Runtime Configuration**: Dynamic configuration updates
- **Default Values**: Sensible defaults for all settings
### 2. Connection Options
- **Multiple Drivers**: Support for various ODBC drivers
- **Port Configuration**: Custom port support
- **SSL/TLS Options**: Encryption and certificate validation
- **Connection Timeouts**: Configurable timeout settings
### 3. Security Configuration
- **Credential Management**: Secure password handling
- **Certificate Validation**: SSL certificate verification
- **Access Control**: User permission management
- **Audit Settings**: Configurable logging levels
## 🌐 Integration Features
### 1. MCP Protocol Support
- **Full MCP Compliance**: Complete Model Context Protocol implementation
- **Claude Desktop Integration**: Seamless integration with Claude Desktop
- **Tool Discovery**: Automatic tool registration and discovery
- **Error Handling**: Comprehensive MCP error handling
### 2. Cross-Platform Support
- **Windows**: Full Windows support with native ODBC drivers
- **Linux**: Ubuntu/Debian support with Microsoft ODBC drivers
- **macOS**: Homebrew-based installation and configuration
- **Docker**: Containerized deployment options
### 3. Deployment Options
- **NPM Package**: Easy installation via npm
- **Python Package**: PyPI package for Python environments
- **Source Installation**: Direct installation from source
- **Docker Deployment**: Containerized deployment
## 📈 Monitoring and Logging
### 1. Comprehensive Logging
- **Operation Logging**: All database operations are logged
- **Performance Logging**: Execution times and resource usage
- **Error Logging**: Detailed error information and stack traces
- **Security Logging**: Authentication and authorization events
### 2. Monitoring Capabilities
- **Real-Time Monitoring**: Live performance metrics
- **Historical Data**: Performance trends over time
- **Alert Support**: Configurable alerts for performance issues
- **Dashboard Integration**: Integration with monitoring dashboards
### 3. Debugging Support
- **Verbose Logging**: Detailed logging for debugging
- **Query Tracing**: Complete query execution tracing
- **Error Diagnostics**: Detailed error analysis and suggestions
- **Performance Profiling**: Query performance profiling
## 🔄 Version History
### v1.2.0 (Current)
- **Safety Features**: Comprehensive confirmation requirements for destructive operations
- **Enhanced Validation**: Latest Pydantic field_validator syntax
- **Documentation**: Complete safety and features documentation
- **Dependencies**: Updated to latest versions
- **Testing**: Enhanced test coverage with safety feature tests
### v1.1.0
- **Views Support**: Complete view management capabilities
- **Stored Procedures**: Full stored procedure support
- **Execution Plans**: Query execution plan analysis
- **Type Safety**: Comprehensive Pydantic validation
- **Documentation**: Enhanced documentation with examples
### v1.0.0
- **Core CRUD**: Basic create, read, update, delete operations
- **SQL Server Connectivity**: ODBC-based database connectivity
- **MCP Integration**: Model Context Protocol implementation
- **Configuration**: Basic configuration management
## 🎯 Use Cases
### 1. Database Administration
- **Schema Management**: Explore and manage database schemas
- **Data Migration**: Move data between databases
- **Performance Tuning**: Optimize query performance
- **Maintenance Tasks**: Automated database maintenance
### 2. Application Development
- **Rapid Prototyping**: Quick database operations for development
- **Data Analysis**: Analyze application data and performance
- **Testing**: Database testing and validation
- **Debugging**: Debug database-related issues
### 3. Business Intelligence
- **Data Exploration**: Discover and analyze business data
- **Report Generation**: Create reports from database data
- **Performance Analysis**: Analyze business process performance
- **Data Quality**: Ensure data integrity and quality
### 4. DevOps and Operations
- **Database Monitoring**: Monitor database health and performance
- **Automated Tasks**: Automate routine database operations
- **Troubleshooting**: Diagnose and resolve database issues
- **Capacity Planning**: Plan database capacity and growth
## 🚀 Getting Started
### Quick Installation
```bash
# Install via npm
npm install sqlserver-mcp-colossal
# Or install via pip
pip install sqlserver-mcp-colossal
```
### Basic Usage
```python
# Configure connection
configure_sqlserver(
server="your-server",
database="your-database",
username="your-username",
password="your-password"
)
# List tables
list_tables()
# Query data
get_table_data(table_name="users", limit=10)
# Insert data
insert_data(
table_name="users",
data='{"name": "John Doe", "email": "john@example.com"}'
)
```
## 📞 Support and Resources
- **Documentation**: Complete documentation in the `docs/` folder
- **Examples**: Real-world examples in the README
- **GitHub Issues**: Report bugs and request features
- **Email Support**: support@javiandev.com
- **Community**: Join our community discussions
## 🔮 Future Roadmap
### Planned Features
- **Graph Database Support**: Neo4j and other graph databases
- **NoSQL Support**: MongoDB, Redis, and other NoSQL databases
- **Cloud Integration**: Enhanced cloud database support
- **Advanced Analytics**: Machine learning integration
- **Real-Time Features**: Real-time data streaming and updates
### Community Contributions
- **Plugin System**: Extensible plugin architecture
- **Custom Validators**: User-defined validation rules
- **Theme Support**: Customizable UI themes
- **API Extensions**: Extended API capabilities
*This documentation is continuously updated. For the latest information, visit our GitHub repository or contact support.*