UNPKG

sql-wasm

Version:

SQLite compiled to WebAssembly through Emscripten.

1,334 lines (1,151 loc) 313 kB
/* eslint-disable camelcase */ var createSqlite3Api = (function (module) { var sqlite3_open = module.cwrap("sqlite3_open", "number", ["string", "number"]); var sqlite3_close_v2 = module.cwrap("sqlite3_close_v2", "number", ["number"]); var sqlite3_exec = module.cwrap("sqlite3_exec", "number", ["number", "string", "number", "number", "number"]); var sqlite3_free = module.cwrap("sqlite3_free", "", ["number"]); var sqlite3_changes = module.cwrap("sqlite3_changes", "number", ["number"]); // Prepared statements // prepare var sqlite3_prepare_v2 = module.cwrap("sqlite3_prepare_v2", "number", ["number", "string", "number", "number", "number"]); // Version of sqlite3_prepare_v2 to which a pointer to a string that is already // in memory is passed. var sqlite3_prepare_v2_sqlptr = module.cwrap("sqlite3_prepare_v2", "number", ["number", "number", "number", "number", "number"]); // Bind parameters // int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); // We declare const char* as a number, because we will manually allocate the memory and pass a pointer to the function var sqlite3_bind_text = module.cwrap("sqlite3_bind_text", "number", ["number", "number", "number", "number", "number"]); var sqlite3_bind_blob = module.cwrap("sqlite3_bind_blob", "number", ["number", "number", "number", "number", "number"]); // int sqlite3_bind_double(sqlite3_stmt*, int, double); var sqlite3_bind_double = module.cwrap("sqlite3_bind_double", "number", ["number", "number", "number"]); // int sqlite3_bind_double(sqlite3_stmt*, int, int); var sqlite3_bind_int = module.cwrap("sqlite3_bind_int", "number", ["number", "number", "number"]); // int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); var sqlite3_bind_parameter_index = module.cwrap("sqlite3_bind_parameter_index", "number", ["number", "string"]); // Get values // int sqlite3_step(sqlite3_stmt*) var sqlite3_step = module.cwrap("sqlite3_step", "number", ["number"]); var sqlite3_errmsg = module.cwrap("sqlite3_errmsg", "string", ["number"]); // int sqlite3_data_count(sqlite3_stmt *pStmt); var sqlite3_data_count = module.cwrap("sqlite3_data_count", "number", ["number"]); var sqlite3_column_double = module.cwrap("sqlite3_column_double", "number", ["number", "number"]); var sqlite3_column_text = module.cwrap("sqlite3_column_text", "string", ["number", "number"]); var sqlite3_column_blob = module.cwrap("sqlite3_column_blob", "number", ["number", "number"]); var sqlite3_column_bytes = module.cwrap("sqlite3_column_bytes", "number", ["number", "number"]); var sqlite3_column_type = module.cwrap("sqlite3_column_type", "number", ["number", "number"]); // const char *sqlite3_column_name(sqlite3_stmt*, int N); var sqlite3_column_name = module.cwrap("sqlite3_column_name", "string", ["number", "number"]); // int sqlite3_reset(sqlite3_stmt *pStmt); var sqlite3_reset = module.cwrap("sqlite3_reset", "number", ["number"]); var sqlite3_clear_bindings = module.cwrap("sqlite3_clear_bindings", "number", ["number"]); // int sqlite3_finalize(sqlite3_stmt *pStmt); var sqlite3_finalize = module.cwrap("sqlite3_finalize", "number", ["number"]); // Create custom functions var sqlite3_create_function_v2 = module.cwrap("sqlite3_create_function_v2", "number", ["number", "string", "number", "number", "number", "number", "number", "number", "number"]); var sqlite3_value_type = module.cwrap("sqlite3_value_type", "number", ["number"]); var sqlite3_value_bytes = module.cwrap("sqlite3_value_bytes", "number", ["number"]); var sqlite3_value_text = module.cwrap("sqlite3_value_text", "string", ["number"]); var sqlite3_value_int = module.cwrap("sqlite3_value_int", "number", ["number"]); var sqlite3_value_blob = module.cwrap("sqlite3_value_blob", "number", ["number"]); var sqlite3_value_double = module.cwrap("sqlite3_value_double", "number", ["number"]); var sqlite3_result_double = module.cwrap("sqlite3_result_double", "", ["number", "number"]); var sqlite3_result_null = module.cwrap("sqlite3_result_null", "", ["number"]); var sqlite3_result_text = module.cwrap("sqlite3_result_text", "", ["number", "string", "number", "number"]); var RegisterExtensionFunctions = module.cwrap("RegisterExtensionFunctions", "number", ["number"]); return { sqlite3_open: sqlite3_open, sqlite3_close_v2: sqlite3_close_v2, sqlite3_exec: sqlite3_exec, sqlite3_free: sqlite3_free, sqlite3_changes: sqlite3_changes, sqlite3_prepare_v2: sqlite3_prepare_v2, sqlite3_prepare_v2_sqlptr: sqlite3_prepare_v2_sqlptr, sqlite3_bind_text: sqlite3_bind_text, sqlite3_bind_blob: sqlite3_bind_blob, sqlite3_bind_double: sqlite3_bind_double, sqlite3_bind_int: sqlite3_bind_int, sqlite3_bind_parameter_index: sqlite3_bind_parameter_index, sqlite3_step: sqlite3_step, sqlite3_errmsg: sqlite3_errmsg, sqlite3_data_count: sqlite3_data_count, sqlite3_column_double: sqlite3_column_double, sqlite3_column_text: sqlite3_column_text, sqlite3_column_blob: sqlite3_column_blob, sqlite3_column_bytes: sqlite3_column_bytes, sqlite3_column_type: sqlite3_column_type, sqlite3_column_name: sqlite3_column_name, sqlite3_reset: sqlite3_reset, sqlite3_clear_bindings: sqlite3_clear_bindings, sqlite3_finalize: sqlite3_finalize, sqlite3_create_function_v2: sqlite3_create_function_v2, sqlite3_value_type: sqlite3_value_type, sqlite3_value_bytes: sqlite3_value_bytes, sqlite3_value_text: sqlite3_value_text, sqlite3_value_int: sqlite3_value_int, sqlite3_value_blob: sqlite3_value_blob, sqlite3_value_double: sqlite3_value_double, sqlite3_result_double: sqlite3_result_double, sqlite3_result_null: sqlite3_result_null, sqlite3_result_text: sqlite3_result_text, RegisterExtensionFunctions: RegisterExtensionFunctions }; }); var sqlite3 = (function() { var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined; return ( function(sqlite3) { sqlite3 = sqlite3 || {}; // The Module object: Our interface to the outside world. We import // and export values on it. There are various ways Module can be used: // 1. Not defined. We create it here // 2. A function parameter, function(Module) { ..generated code.. } // 3. pre-run appended it, var Module = {}; ..generated code.. // 4. External script tag defines var Module. // We need to check if Module already exists (e.g. case 3 above). // Substitution will be replaced with actual code on later stage of the build, // this way Closure Compiler will not mangle it (e.g. case 4. above). // Note that if you want to run closure, and also to use Module // after the generated code, you will need to define var Module = {}; // before the code. Then that object will be used in the code, and you // can continue to use Module afterwards as well. var Module = typeof sqlite3 !== 'undefined' ? sqlite3 : {}; // --pre-jses are emitted after the Module integration code, so that they can // refer to Module (if they choose; they can also define Module) // {{PRE_JSES}} // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = {}; var key; for (key in Module) { if (Module.hasOwnProperty(key)) { moduleOverrides[key] = Module[key]; } } Module['arguments'] = []; Module['thisProgram'] = './this.program'; Module['quit'] = function(status, toThrow) { throw toThrow; }; Module['preRun'] = []; Module['postRun'] = []; // The environment setup code below is customized to use Module. if (Module['ENVIRONMENT']) { throw new Error('Module.ENVIRONMENT has been deprecated. To force the environment, use the ENVIRONMENT compile-time option (for example, -s ENVIRONMENT=web or -s ENVIRONMENT=node)'); } // Three configurations we can be running in: // 1) We could be the application main() thread running in the main JS UI thread. (false == false and ENVIRONMENT_IS_PTHREAD == false) // 2) We could be the application main() thread proxied to worker. (with Emscripten -s PROXY_TO_WORKER=1) (false == true, ENVIRONMENT_IS_PTHREAD == false) // 3) We could be an application pthread running in a worker. (false == true and ENVIRONMENT_IS_PTHREAD == true) assert(typeof Module['memoryInitializerPrefixURL'] === 'undefined', 'Module.memoryInitializerPrefixURL option was removed, use Module.locateFile instead'); assert(typeof Module['pthreadMainPrefixURL'] === 'undefined', 'Module.pthreadMainPrefixURL option was removed, use Module.locateFile instead'); assert(typeof Module['cdInitializerPrefixURL'] === 'undefined', 'Module.cdInitializerPrefixURL option was removed, use Module.locateFile instead'); assert(typeof Module['filePackagePrefixURL'] === 'undefined', 'Module.filePackagePrefixURL option was removed, use Module.locateFile instead'); // `/` should be present at the end if `scriptDirectory` is not empty var scriptDirectory = ''; function locateFile(path) { if (Module['locateFile']) { return Module['locateFile'](path, scriptDirectory); } else { return scriptDirectory + path; } } { scriptDirectory = __dirname + '/'; // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node var nodeFS; var nodePath; Module['read'] = function shell_read(filename, binary) { var ret; if (!nodeFS) nodeFS = require('fs'); if (!nodePath) nodePath = require('path'); filename = nodePath['normalize'](filename); ret = nodeFS['readFileSync'](filename); return binary ? ret : ret.toString(); }; Module['readBinary'] = function readBinary(filename) { var ret = Module['read'](filename, true); if (!ret.buffer) { ret = new Uint8Array(ret); } assert(ret.buffer); return ret; }; if (process['argv'].length > 1) { Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/'); } Module['arguments'] = process['argv'].slice(2); // MODULARIZE will export the module in the proper place outside, we don't need to export here process['on']('uncaughtException', function(ex) { // suppress ExitStatus exceptions from showing an error if (!(ex instanceof ExitStatus)) { throw ex; } }); // Currently node will swallow unhandled rejections, but this behavior is // deprecated, and in the future it will exit with error status. process['on']('unhandledRejection', function(reason, p) { err('node.js exiting due to unhandled promise rejection'); process['exit'](1); }); Module['quit'] = function(status) { process['exit'](status); }; Module['inspect'] = function () { return '[Emscripten Module object]'; }; } // Set up the out() and err() hooks, which are how we can print to stdout or // stderr, respectively. // If the user provided Module.print or printErr, use that. Otherwise, // console.log is checked first, as 'print' on the web will open a print dialogue // printErr is preferable to console.warn (works better in shells) // bind(console) is necessary to fix IE/Edge closed dev tools panel behavior. var out = Module['print'] || (typeof console !== 'undefined' ? console.log.bind(console) : (typeof print !== 'undefined' ? print : null)); var err = Module['printErr'] || (typeof printErr !== 'undefined' ? printErr : ((typeof console !== 'undefined' && console.warn.bind(console)) || out)); // *** Environment setup code *** // Merge back in the overrides for (key in moduleOverrides) { if (moduleOverrides.hasOwnProperty(key)) { Module[key] = moduleOverrides[key]; } } // Free the object hierarchy contained in the overrides, this lets the GC // reclaim data used e.g. in memoryInitializerRequest, which is a large typed array. moduleOverrides = undefined; // {{PREAMBLE_ADDITIONS}} var STACK_ALIGN = 16; // stack management, and other functionality that is provided by the compiled code, // should not be used before it is ready stackSave = stackRestore = stackAlloc = setTempRet0 = getTempRet0 = function() { abort('cannot use the stack before compiled code is ready to run, and has provided stack access'); }; function staticAlloc(size) { assert(!staticSealed); var ret = STATICTOP; STATICTOP = (STATICTOP + size + 15) & -16; assert(STATICTOP < TOTAL_MEMORY, 'not enough memory for static allocation - increase TOTAL_MEMORY'); return ret; } function dynamicAlloc(size) { assert(DYNAMICTOP_PTR); var ret = HEAP32[DYNAMICTOP_PTR>>2]; var end = (ret + size + 15) & -16; HEAP32[DYNAMICTOP_PTR>>2] = end; if (end >= TOTAL_MEMORY) { var success = enlargeMemory(); if (!success) { HEAP32[DYNAMICTOP_PTR>>2] = ret; return 0; } } return ret; } function alignMemory(size, factor) { if (!factor) factor = STACK_ALIGN; // stack alignment (16-byte) by default var ret = size = Math.ceil(size / factor) * factor; return ret; } function getNativeTypeSize(type) { switch (type) { case 'i1': case 'i8': return 1; case 'i16': return 2; case 'i32': return 4; case 'i64': return 8; case 'float': return 4; case 'double': return 8; default: { if (type[type.length-1] === '*') { return 4; // A pointer } else if (type[0] === 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 === 0); return bits / 8; } else { return 0; } } } } function warnOnce(text) { if (!warnOnce.shown) warnOnce.shown = {}; if (!warnOnce.shown[text]) { warnOnce.shown[text] = 1; err(text); } } var asm2wasmImports = { // special asm2wasm imports "f64-rem": function(x, y) { return x % y; }, "debugger": function() { debugger; } }; var functionPointers = new Array(64); // The address globals begin at. Very low in memory, for code size and optimization opportunities. // Above 0 is static memory, starting with globals. // Then the stack. // Then 'dynamic' memory for sbrk. var GLOBAL_BASE = 1024; // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html //======================================== // Runtime essentials //======================================== var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort() /** @type {function(*, string=)} */ function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { var func = Module['_' + ident]; // closure exported function assert(func, 'Cannot call unknown function ' + ident + ', make sure it is exported'); return func; } var JSfuncs = { // Helpers for cwrap -- it can't refer to Runtime directly because it might // be renamed by closure, instead it calls JSfuncs['stackSave'].body to find // out what the minified function name is. 'stackSave': function() { stackSave(); }, 'stackRestore': function() { stackRestore(); }, // type conversion from js to c 'arrayToC' : function(arr) { var ret = stackAlloc(arr.length); writeArrayToMemory(arr, ret); return ret; }, 'stringToC' : function(str) { var ret = 0; if (str !== null && str !== undefined && str !== 0) { // null string // at most 4 bytes per UTF-8 code point, +1 for the trailing '\0' var len = (str.length << 2) + 1; ret = stackAlloc(len); stringToUTF8(str, ret, len); } return ret; } }; // For fast lookup of conversion functions var toC = { 'string': JSfuncs['stringToC'], 'array': JSfuncs['arrayToC'] }; // C calling interface. function ccall(ident, returnType, argTypes, args, opts) { function convertReturnValue(ret) { if (returnType === 'string') return Pointer_stringify(ret); if (returnType === 'boolean') return Boolean(ret); return ret; } var func = getCFunc(ident); var cArgs = []; var stack = 0; assert(returnType !== 'array', 'Return type should not be "array".'); if (args) { for (var i = 0; i < args.length; i++) { var converter = toC[argTypes[i]]; if (converter) { if (stack === 0) stack = stackSave(); cArgs[i] = converter(args[i]); } else { cArgs[i] = args[i]; } } } var ret = func.apply(null, cArgs); ret = convertReturnValue(ret); if (stack !== 0) stackRestore(stack); return ret; } function cwrap(ident, returnType, argTypes, opts) { return function() { return ccall(ident, returnType, argTypes, arguments, opts); } } /** @type {function(number, number, string, boolean=)} */ function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': HEAP8[((ptr)>>0)]=value; break; case 'i8': HEAP8[((ptr)>>0)]=value; break; case 'i16': HEAP16[((ptr)>>1)]=value; break; case 'i32': HEAP32[((ptr)>>2)]=value; break; case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble)/4294967296.0))), 4294967295.0))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break; case 'float': HEAPF32[((ptr)>>2)]=value; break; case 'double': HEAPF64[((ptr)>>3)]=value; break; default: abort('invalid type for setValue: ' + type); } } /** @type {function(number, string, boolean=)} */ function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': return HEAP8[((ptr)>>0)]; case 'i8': return HEAP8[((ptr)>>0)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': return HEAP32[((ptr)>>2)]; case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; default: abort('invalid type for getValue: ' + type); } return null; } var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_NONE = 4; // Do not allocate // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* /** @type {function((TypedArray|Array<number>|number), string, number, number=)} */ function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [typeof _malloc === 'function' ? _malloc : staticAlloc, stackAlloc, staticAlloc, dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var stop; ptr = ret; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr)>>2)]=0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++)>>0)]=0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(/** @type {!Uint8Array} */ (slab), ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; type = singleType || types[i]; if (type === 0) { i++; continue; } assert(type, 'Must know what type to store in allocate!'); if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } // Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready function getMemory(size) { if (!staticSealed) return staticAlloc(size); if (!runtimeInitialized) return dynamicAlloc(size); return _malloc(size); } /** @type {function(number, number=)} */ function Pointer_stringify(ptr, length) { if (length === 0 || !ptr) return ''; // Find the length, and check for UTF while doing so var hasUtf = 0; var t; var i = 0; while (1) { assert(ptr + i < TOTAL_MEMORY); t = HEAPU8[(((ptr)+(i))>>0)]; hasUtf |= t; if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (hasUtf < 128) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } return UTF8ToString(ptr); } // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns // a copy of that string as a Javascript String object. var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined; function UTF8ArrayToString(u8Array, idx) { var endPtr = idx; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. while (u8Array[endPtr]) ++endPtr; if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)); } else { var u0, u1, u2, u3, u4, u5; var str = ''; while (1) { // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 u0 = u8Array[idx++]; if (!u0) return str; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } u1 = u8Array[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } u2 = u8Array[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u3 = u8Array[idx++] & 63; if ((u0 & 0xF8) == 0xF0) { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3; } else { u4 = u8Array[idx++] & 63; if ((u0 & 0xFC) == 0xF8) { u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4; } else { u5 = u8Array[idx++] & 63; u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5; } } } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } } } // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF8ToString(ptr) { return UTF8ArrayToString(HEAPU8,ptr); } // Copies the given Javascript String object 'str' to the given byte array at address 'outIdx', // encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element. // outIdx: The starting offset in the array to begin the copying. // maxBytesToWrite: The maximum number of bytes this function can write to the array. // This count should include the null terminator, // i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else. // maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes. return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) { var u1 = str.charCodeAt(++i); u = 0x10000 + ((u & 0x3FF) << 10) | (u1 & 0x3FF); } if (u <= 0x7F) { if (outIdx >= endIdx) break; outU8Array[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; outU8Array[outIdx++] = 0xC0 | (u >> 6); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; outU8Array[outIdx++] = 0xE0 | (u >> 12); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x1FFFFF) { if (outIdx + 3 >= endIdx) break; outU8Array[outIdx++] = 0xF0 | (u >> 18); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x3FFFFFF) { if (outIdx + 4 >= endIdx) break; outU8Array[outIdx++] = 0xF8 | (u >> 24); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 5 >= endIdx) break; outU8Array[outIdx++] = 0xFC | (u >> 30); outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. outU8Array[outIdx] = 0; return outIdx - startIdx; } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8(str, outPtr, maxBytesToWrite) { assert(typeof maxBytesToWrite == 'number', 'stringToUTF8(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); return stringToUTF8Array(str, HEAPU8,outPtr, maxBytesToWrite); } // Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF8(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { ++len; } else if (u <= 0x7FF) { len += 2; } else if (u <= 0xFFFF) { len += 3; } else if (u <= 0x1FFFFF) { len += 4; } else if (u <= 0x3FFFFFF) { len += 5; } else { len += 6; } } return len; } // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined; // Allocate heap space for a JS string, and write it there. // It is the responsibility of the caller to free() that memory. function allocateUTF8(str) { var size = lengthBytesUTF8(str) + 1; var ret = _malloc(size); if (ret) stringToUTF8Array(str, HEAP8, ret, size); return ret; } function demangle(func) { warnOnce('warning: build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling'); return func; } function demangleAll(text) { var regex = /__Z[\w\d_]+/g; return text.replace(regex, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']'); }); } function jsStackTrace() { var err = new Error(); if (!err.stack) { // IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown, // so try that as a special-case. try { throw new Error(0); } catch(e) { err = e; } if (!err.stack) { return '(no stack trace available)'; } } return err.stack.toString(); } function stackTrace() { var js = jsStackTrace(); if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace'](); return demangleAll(js); } // Memory management var PAGE_SIZE = 16384; var WASM_PAGE_SIZE = 65536; var ASMJS_PAGE_SIZE = 16777216; var MIN_TOTAL_MEMORY = 16777216; function alignUp(x, multiple) { if (x % multiple > 0) { x += multiple - (x % multiple); } return x; } var /** @type {ArrayBuffer} */ buffer, /** @type {Int8Array} */ HEAP8, /** @type {Uint8Array} */ HEAPU8, /** @type {Int16Array} */ HEAP16, /** @type {Uint16Array} */ HEAPU16, /** @type {Int32Array} */ HEAP32, /** @type {Uint32Array} */ HEAPU32, /** @type {Float32Array} */ HEAPF32, /** @type {Float64Array} */ HEAPF64; function updateGlobalBuffer(buf) { Module['buffer'] = buffer = buf; } function updateGlobalBufferViews() { Module['HEAP8'] = HEAP8 = new Int8Array(buffer); Module['HEAP16'] = HEAP16 = new Int16Array(buffer); Module['HEAP32'] = HEAP32 = new Int32Array(buffer); Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer); Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer); Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer); Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer); Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer); } var STATIC_BASE, STATICTOP, staticSealed; // static area var STACK_BASE, STACKTOP, STACK_MAX; // stack area var DYNAMIC_BASE, DYNAMICTOP_PTR; // dynamic area handled by sbrk STATIC_BASE = STATICTOP = STACK_BASE = STACKTOP = STACK_MAX = DYNAMIC_BASE = DYNAMICTOP_PTR = 0; staticSealed = false; // Initializes the stack cookie. Called at the startup of main and at the startup of each thread in pthreads mode. function writeStackCookie() { assert((STACK_MAX & 3) == 0); HEAPU32[(STACK_MAX >> 2)-1] = 0x02135467; HEAPU32[(STACK_MAX >> 2)-2] = 0x89BACDFE; } function checkStackCookie() { if (HEAPU32[(STACK_MAX >> 2)-1] != 0x02135467 || HEAPU32[(STACK_MAX >> 2)-2] != 0x89BACDFE) { abort('Stack overflow! Stack cookie has been overwritten, expected hex dwords 0x89BACDFE and 0x02135467, but received 0x' + HEAPU32[(STACK_MAX >> 2)-2].toString(16) + ' ' + HEAPU32[(STACK_MAX >> 2)-1].toString(16)); } // Also test the global address 0 for integrity. This check is not compatible with SAFE_SPLIT_MEMORY though, since that mode already tests all address 0 accesses on its own. if (HEAP32[0] !== 0x63736d65 /* 'emsc' */) throw 'Runtime error: The application has corrupted its heap memory area (address zero)!'; } function abortStackOverflow(allocSize) { abort('Stack overflow! Attempted to allocate ' + allocSize + ' bytes on the stack, but stack has only ' + (STACK_MAX - stackSave() + allocSize) + ' bytes available!'); } function abortOnCannotGrowMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime, or (3) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 '); } if (!Module['reallocBuffer']) Module['reallocBuffer'] = function(size) { var ret; try { if (ArrayBuffer.transfer) { ret = ArrayBuffer.transfer(buffer, size); } else { var oldHEAP8 = HEAP8; ret = new ArrayBuffer(size); var temp = new Int8Array(ret); temp.set(oldHEAP8); } } catch(e) { return false; } var success = _emscripten_replace_memory(ret); if (!success) return false; return ret; }; function enlargeMemory() { // TOTAL_MEMORY is the current size of the actual array, and DYNAMICTOP is the new top. assert(HEAP32[DYNAMICTOP_PTR>>2] > TOTAL_MEMORY); // This function should only ever be called after the ceiling of the dynamic heap has already been bumped to exceed the current total size of the asm.js heap. var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. var LIMIT = 2147483648 - PAGE_MULTIPLE; // We can do one page short of 2GB as theoretical maximum. if (HEAP32[DYNAMICTOP_PTR>>2] > LIMIT) { err('Cannot enlarge memory, asked to go up to ' + HEAP32[DYNAMICTOP_PTR>>2] + ' bytes, but the limit is ' + LIMIT + ' bytes!'); return false; } var OLD_TOTAL_MEMORY = TOTAL_MEMORY; TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY); // So the loop below will not be infinite, and minimum asm.js memory size is 16MB. while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR>>2]) { // Keep incrementing the heap size as long as it's less than what is requested. if (TOTAL_MEMORY <= 536870912) { TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE); // Simple heuristic: double until 1GB... } else { // ..., but after that, add smaller increments towards 2GB, which we cannot reach TOTAL_MEMORY = Math.min(alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), LIMIT); if (TOTAL_MEMORY === OLD_TOTAL_MEMORY) { warnOnce('Cannot ask for more memory since we reached the practical limit in browsers (which is just below 2GB), so the request would have failed. Requesting only ' + TOTAL_MEMORY); } } } var replacement = Module['reallocBuffer'](TOTAL_MEMORY); if (!replacement || replacement.byteLength != TOTAL_MEMORY) { err('Failed to grow the heap from ' + OLD_TOTAL_MEMORY + ' bytes to ' + TOTAL_MEMORY + ' bytes, not enough memory!'); if (replacement) { err('Expected to get back a buffer of size ' + TOTAL_MEMORY + ' bytes, but instead got back a buffer of size ' + replacement.byteLength); } // restore the state to before this call, we failed TOTAL_MEMORY = OLD_TOTAL_MEMORY; return false; } // everything worked updateGlobalBuffer(replacement); updateGlobalBufferViews(); if (!Module["usingWasm"]) { err('Warning: Enlarging memory arrays, this is not fast! ' + [OLD_TOTAL_MEMORY, TOTAL_MEMORY]); } return true; } var byteLength; try { byteLength = Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get); byteLength(new ArrayBuffer(4)); // can fail on older ie } catch(e) { // can fail on older node/v8 byteLength = function(buffer) { return buffer.byteLength; }; } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; if (TOTAL_MEMORY < TOTAL_STACK) err('TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + TOTAL_MEMORY + '! (TOTAL_STACK=' + TOTAL_STACK + ')'); // Initialize the runtime's memory // check for full engine support (use string 'subarray' to avoid closure compiler confusion) assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && Int32Array.prototype.subarray !== undefined && Int32Array.prototype.set !== undefined, 'JS engine does not provide full typed array support'); // Use a provided buffer, if there is one, or else allocate a new one if (Module['buffer']) { buffer = Module['buffer']; assert(buffer.byteLength === TOTAL_MEMORY, 'provided buffer should be ' + TOTAL_MEMORY + ' bytes, but it is ' + buffer.byteLength); } else { // Use a WebAssembly memory where available if (typeof WebAssembly === 'object' && typeof WebAssembly.Memory === 'function') { assert(TOTAL_MEMORY % WASM_PAGE_SIZE === 0); Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE }); buffer = Module['wasmMemory'].buffer; } else { buffer = new ArrayBuffer(TOTAL_MEMORY); } assert(buffer.byteLength === TOTAL_MEMORY); Module['buffer'] = buffer; } updateGlobalBufferViews(); function getTotalMemory() { return TOTAL_MEMORY; } // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 0x63736d65; /* 'emsc' */ HEAP16[1] = 0x6373; if (HEAPU8[2] !== 0x73 || HEAPU8[3] !== 0x63) throw 'Runtime error: expected the system to be little-endian!'; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Module['dynCall_v'](func); } else { Module['dynCall_vi'](func, callback.arg); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATPOSTRUN__ = []; // functions called after the main() is called var runtimeInitialized = false; var runtimeExited = false; function preRun() { // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { checkStackCookie(); if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { checkStackCookie(); callRuntimeCallbacks(__ATMAIN__); } function postRun() { checkStackCookie(); // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } function writeArrayToMemory(array, buffer) { assert(array.length >= 0, 'writeArrayToMemory array must have a length (should be an array or typed array)'); HEAP8.set(array, buffer); } function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; ++i) { assert(str.charCodeAt(i) === str.charCodeAt(i)&0xff); HEAP8[((buffer++)>>0)]=str.charCodeAt(i); } // Null-terminate the pointer to the HEAP. if (!dontAddNull) HEAP8[((buffer)>>0)]=0; } assert(Math['imul'] && Math['fround'] && Math['clz32'] && Math['trunc'], 'this is a legacy browser, build with LEGACY_VM_SUPPORT'); var Math_abs = Math.abs; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_min = Math.min; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled var runDependencyTracking = {}; function getUniqueRunDependency(id) { var orig = id; while (1) { if (!runDependencyTracking[id]) return id; id = orig + Math.random(); } return id; } function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(!runDependencyTracking[id]); runDependencyTracking[id] = 1; if (runDependencyWatcher === null && typeof setInterval !== 'undefined') { // Check for missing dependencies every few seconds runDependencyWatcher = setInterval(function() { if (ABORT) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; return; } var shown = false; for (var dep in runDependencyTracking) { if (!shown) { shown = true; err('still waiting on run dependencies:'); } err('dependency: ' + dep); } if (shown) { err('(end of list)'); } }, 10000); } } else { err('warning: run dependency added without ID'); } } function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(runDependencyTracking[id]); delete runDependencyTracking[id]; } else { err('warning: run dependency removed without ID'); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data // Prefix of data URIs emitted by SINGLE_FILE and related options. var dataURIPrefix = 'data:application/octet-stream;base64,'; // Indicates whether filename is a base64 data URI. function isDataURI(filename) { return String.prototype.startsWith ? filename.startsWith(dataURIPrefix) : filename.indexOf(dataURIPrefix) === 0; } function integrateWasmJS() { var wasmTextFile = 'sqlite3.wast'; var wasmBinaryFile = 'sqlite3.wasm'; var asmjsCodeFile = 'sqlite3.temp.asm.js'; if (!isDataURI(wasmTextFile)) { wasmTextFile = locateFile(wasmTextFile); } if (!isDataURI(wasmBinaryFile)) { wasmBinaryFile = locateFile(wasmBinaryFile); } if (!isDataURI(asmjsCodeFile)) { asmjsCodeFile = locateFile(asmjsCodeFile); } // utilities var wasmPageSize = 64*1024; var info = { 'global': null, 'env': null, 'asm2wasm': asm2wasmImports, 'parent': Module // Module inside wasm-js.cpp refers to wasm-js.cpp; this allows access to the outside program. }; var exports = null; function mergeMemory(newBuffer) { // The wasm instance creates its memory. But static init code might have written to // buffer already, including the mem init file, and we must copy it over in a proper merge. // TODO: avoid this copy, by avoiding such static init writes // TODO: in shorter term, just copy up to the last static init write var oldBuffer = Module['buffer']; if (newBuffer.byteLength < oldBuffer.byteLength) { err('the new buffer in mergeMemory is smaller than the previous one. in native wasm, we should grow memory here'); } var oldView = new Int8Array(oldBuffer); var newView = new Int8Array(newBuffer); newView.set(oldView); updateGlobalBuffer(newBuffer); updateGlobalBufferViews(); } function fixImports(imports) { return imports; } function getBinary() { try { if (Module['wasmBinary']) { return new Uint8Array(Module['wasmBinary']); } if (Module['readBinary']) { return Module['readBinary'](wasmBinaryFile); } else { throw "both async and sync fetching of the wasm failed"; } } catch (err) { abort(err); } } function getBinaryPromise() { // if we don't have the binary yet, and have the Fetch api, use that // in some environments, like Electron's render process, Fetch api may be present, but have a different context than expected, let's only use it on the Web if (!Module['wasmBinary'] && (false) && typeof fetch === 'function') { return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function(response) { if (!response['ok']) { throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; } return response['arrayBuffer'](); }).catch(function () { return getBinary(); }); } // Otherwise, getBinary should be able to get it synchronously return new Promise(function(resolve, reject) { resolve(getBinary()); }); } // do-method functions function doNativeWasm(global, env, providedBuffer) { if (typeof WebAssembly !== 'object') { // when the method is just native-wasm, our error message can be very specific abort('No WebAssembly support found. Build with -s WASM=0 to target JavaScript instead.'); err('no native wasm support detected'); return false; } // prepare memory import if (!(Module['wasmMemory'] instanceof WebAssembly.Memory)) { err('no native wasm Memory in use'); return false; } env['memory'] = Module['wasmMemory']; // Load the wasm module and create an instance of using native support in the JS engine. info['global'] = { 'NaN': NaN, 'Infinity': Infinity }; info['global.Math'] = Math; info['env'] = env; // handle a generated wasm instance, receiving its exports and // performing other necessary setup function receiveInstance(instance, module) { exports = instance.exports; if (exports.memory) mergeMemory(exports.memory); Module['asm'] = exports; Module["usingWasm"] = true; removeRunDependency('wasm-instantiate'); } addRunDependency('wasm-instantiate'); // User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback // to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel // to any other async startup actions they are performing. if (Module['instantiateWasm']) { try { return Module['instantiateWasm'](info, receiveInstance); } catch(e) { err('Module.instantiateWasm callback failed with error: ' + e); return false; } } // Async compilation can be confusing when an error on the page overwrites Module // (for example, if the order of elements is wrong, and the one defining Module is // later), so we save Module and check it later. var trueModule = Module; function receiveInstantiatedSource(output) { // 'output' is a WebAssemblyInstantiatedSource object which has both the module and instance. // receiveInstance() will swap in the exports (to Module.asm) so they can be called assert(Module === trueModule, 'the Module object should not be replaced during async comp