snow-flow
Version:
Snow-Flow v3.2.0: Complete ServiceNow Enterprise Suite with 180+ MCP Tools. ATF Testing, Knowledge Management, Service Catalog, Change Management with CAB scheduling, Virtual Agent chatbots with NLU, Performance Analytics KPIs, Flow Designer automation, A
403 lines (319 loc) ⢠10.9 kB
Markdown
# ServiceNow Queen Agent š
> **Hive-Mind Intelligence for ServiceNow Development**
>
> A single coordination point that spawns specialized agents dynamically, learns from deployments, and orchestrates complex ServiceNow tasks with elegance through simplicity.
## ā ļø IMPORTANT: Flow Creation Removed in v1.4.38 ā ļø
**Note**: All flow-related functionality has been permanently removed from Snow-Flow. Please use ServiceNow's native Flow Designer interface directly for flow creation. All other agent types and functionality continue to work normally.
## Philosophy: Claude-Flow Principles
The ServiceNow Queen Agent follows snow-flow philosophy:
- **šÆ Single Coordination Point**: All tasks go through the Queen
- **ā” Dynamic Agent Spawning**: Creates agents based on task needs, not pre-defined teams
- **š§ Hive-Mind Intelligence**: Coordinates multiple agents seamlessly with shared memory
- **š¾ Simple Memory**: Uses SQLite for persistent learning across sessions
- **š Neural Learning**: Learns from past deployments and adapts patterns
## Architecture
```
ServiceNow Queen Agent
āāā š ServiceNowQueen (Main Coordinator)
āāā š AgentFactory (Dynamic Agent Spawning)
āāā š¾ QueenMemorySystem (SQLite Persistence)
āāā š§ NeuralLearning (Pattern Recognition)
āāā š§ Agent Types (8 Specialized Agents)
```
## Quick Start
```typescript
import { createServiceNowQueen } from './queen';
// Create Queen with hive-mind intelligence
const queen = createServiceNowQueen({
debugMode: true,
maxConcurrentAgents: 5
});
// Execute any ServiceNow objective - Queen handles everything
const result = await queen.executeObjective(
"create incident dashboard with real-time charts and mobile responsiveness"
);
console.log('ā
Deployment completed:', result);
```
## Core Components
### 1. ServiceNow Queen (Main Coordinator)
The central intelligence that:
- Analyzes objectives using neural learning
- Spawns optimal agent swarms dynamically
- Coordinates execution with MCP tools
- Learns from success/failure patterns
```typescript
const queen = new ServiceNowQueen({
memoryPath: './.snow-flow/queen-memory.db',
maxConcurrentAgents: 8,
learningRate: 0.1,
debugMode: true
});
// One command does everything
await queen.executeObjective("create incident dashboard widget with real-time updates");
```
### 2. Dynamic Agent Factory
Spawns specialized agents on-demand based on task analysis:
```typescript
// 8 Available Agent Types
- widget-creator ā HTML, CSS, JS, ServiceNow widgets
- script-writer ā Business rules, script includes, client scripts
- app-architect ā System design, table structures, modules
- integration-specialist ā APIs, data sync, external systems
- catalog-manager ā Service catalog, request items, variables
- researcher ā Analysis, discovery, best practices
- tester ā Quality assurance, mock testing, validation
```
### 3. Persistent Memory System
Simple SQLite-based learning that persists across sessions:
```sql
-- Stores successful deployment patterns
CREATE TABLE patterns (
task_type TEXT,
success_rate REAL,
agent_sequence TEXT,
avg_duration INTEGER
);
-- Remembers created artifacts
CREATE TABLE artifacts (
type TEXT,
name TEXT,
sys_id TEXT,
dependencies TEXT
);
-- Learns from experiences
CREATE TABLE learnings (
key TEXT,
value TEXT,
confidence REAL
);
```
### 4. Neural Learning Engine
Pattern recognition that improves over time:
- **Task Classification**: Widget vs Script vs Application
- **Complexity Estimation**: Based on keyword analysis and learned weights
- **Agent Selection**: Optimal sequence based on successful patterns
- **Success/Failure Learning**: Adjusts confidence weights dynamically
## Execution Flow
```mermaid
graph TD
A[Objective Input] --> B[Neural Analysis]
B --> C[Task Classification]
C --> D[Complexity Estimation]
D --> E[Agent Spawning]
E --> F[Swarm Coordination]
F --> G[MCP Tool Execution]
G --> H[Deployment Result]
H --> I[Pattern Learning]
I --> J[Memory Storage]
```
## Usage Examples
### Simple Widget Creation
```typescript
await queen.executeObjective("create incident dashboard");
// Queen automatically:
// 1. Classifies as 'widget' task
// 2. Spawns: widget-creator ā tester
// 3. Generates HTML, CSS, JS code
// 4. Deploys using snow_deploy MCP tool
// 5. Learns from success for future widget tasks
```
### Complex Widget with Integration
```typescript
await queen.executeObjective(
"create equipment request dashboard with external API integration"
);
// Queen automatically:
// 1. Classifies as 'widget' task (high complexity)
// 2. Spawns: researcher ā widget-creator ā integration-specialist ā tester
// 3. Coordinates sequential execution with agent communication
// 4. Uses snow_deploy + snow_create_rest_message
// 5. Learns optimal agent sequence for similar future tasks
```
### Application Development
```typescript
await queen.executeObjective(
"build complete ITSM solution with custom tables and workflows"
);
// Queen automatically:
// 1. Classifies as 'application' task (very high complexity)
// 2. Spawns: researcher ā app-architect ā script-writer ā widget-creator ā tester
// 3. Coordinates with shared memory between agents
// 4. Uses multiple MCP tools in optimal sequence
// 5. Stores deployment pattern for future application tasks
```
## Learning & Adaptation
The Queen learns from every deployment:
### Success Patterns
```typescript
// Queen remembers successful patterns
{
taskType: 'widget',
successRate: 0.92,
agentSequence: ['widget-creator', 'tester'],
avgDuration: 45000,
mcpSequence: ['snow_deploy', 'snow_widget_test']
}
```
### Failure Recovery
```typescript
// Queen learns from failures and adapts
queen.learnFromFailure(task, 'Permission denied', ['widget-creator']);
// Next time: adds 'researcher' to check permissions first
```
### Neural Weight Adjustment
```typescript
// Adjusts confidence in complexity factors
{
factor: 'chart_integration',
weight: 0.3,
confidence: 0.9 // High confidence after successful chart deployments
}
```
## Agent Coordination
### Parallel Execution
Independent agents (researcher, tester, script-writer) run simultaneously:
```typescript
// Parallel execution for speed
const results = await Promise.all([
researcherAgent.execute(),
testerAgent.execute(),
scriptAgent.execute()
]);
```
### Sequential Coordination
Dependent agents execute in optimal sequence:
```typescript
// Sequential with shared context
researcher ā widget-creator ā tester
// ā shares findings ā
// widget-creator uses research
// ā receives widget
// tester validates
```
### Message Passing
Agents communicate through the Queen:
```typescript
// Agent coordination
this.agentFactory.sendAgentMessage(
fromAgent: 'researcher',
toAgent: 'widget-creator',
type: 'result',
content: { findings: '...', recommendations: '...' }
);
```
## Memory Management
### Artifact Tracking
```typescript
// Stores all created artifacts
queen.memory.storeArtifact({
type: 'widget',
name: 'incident_dashboard_widget',
sys_id: 'abc123...',
config: { /* widget config */ },
dependencies: ['Chart.js library']
});
```
### Pattern Reuse
```typescript
// Reuses successful patterns
const bestPattern = queen.memory.getBestPattern('widget');
if (bestPattern.successRate > 0.8) {
// Use proven agent sequence
agents = spawnAgents(bestPattern.agentSequence);
}
```
### Cross-Session Learning
```typescript
// Persistent learning across sessions
queen.memory.storeLearning(
'widget_chart_integration',
'Always include Chart.js for dashboard widgets',
confidence: 0.95
);
```
## Status & Monitoring
```typescript
// Real-time hive-mind status
const status = queen.getHiveMindStatus();
console.log(status);
/*
{
activeTasks: 2,
activeAgents: 5,
memoryStats: {
patterns: 24,
artifacts: 156,
learnings: 89
},
factoryStats: {
totalActiveAgents: 5,
agentTypeCounts: { 'widget-creator': 2, 'tester': 1 }
}
}
*/
```
## Integration with Existing MCP Tools
The Queen uses existing MCP servers as "tools" for agents:
```typescript
// Widget agents use these MCP tools:
- snow_deploy (unified deployment)
- snow_preview_widget
- snow_widget_test
// Script agents use these MCP tools:
- snow_create_script_include
- snow_create_business_rule
- snow_create_client_script
// All agents coordinate through Queen
```
## Advantages Over Team System
| Old Team System | New Queen System |
|-----------------|------------------|
| š Pre-defined teams | ā” Dynamic agent spawning |
| š§ Fixed capabilities | šÆ Task-optimized agents |
| š Manual coordination | š¤ Autonomous hive-mind |
| š¾ No learning | š§ Continuous adaptation |
| š Complex orchestration | ⨠Elegant simplicity |
## Configuration
```typescript
const queen = new ServiceNowQueen({
// Memory persistence
memoryPath: './.snow-flow/queen/memory.db',
// Agent management
maxConcurrentAgents: 8,
// Learning parameters
learningRate: 0.1,
// Development mode
debugMode: process.env.NODE_ENV === 'development'
});
```
## Export & Backup
```typescript
// Export all learned patterns and memories
const backup = queen.exportMemory();
fs.writeFileSync('queen-backup.json', backup);
// Queen automatically creates SQLite backups
// .snow-flow/queen/memory.db
```
## Philosophy in Action
The Queen embodies **snow-flow principles**:
### 1. Elegance through Simplicity
- **One entry point**: `queen.executeObjective()`
- **No complex configuration**: Works out of the box
- **Natural language**: "create incident dashboard" ā complete deployment
### 2. Intelligence through Learning
- **Remembers what works**: Successful patterns are reused
- **Adapts to failures**: Learns from errors and adjusts
- **Improves over time**: Gets better with each deployment
### 3. Coordination through Simplicity
- **No manual orchestration**: Agents coordinate automatically
- **Clear responsibilities**: Each agent type has focused capabilities
- **Simple communication**: Message passing through Queen
## Future Evolution
The Queen will evolve while maintaining simplicity:
- **š MCP Tool Integration**: Deeper integration with all ServiceNow MCPs
- **šÆ Specialized Agents**: New agent types for specific ServiceNow domains
- **š§ Advanced Learning**: More sophisticated pattern recognition
- **ā” Performance Optimization**: Faster agent spawning and coordination
- **š Security Integration**: Security-aware deployment patterns
---
*Built with ā¤ļø following snow-flow philosophy: Elegance through simplicity, intelligence through learning.*