UNPKG

smartui-migration-tool

Version:

Enterprise-grade CLI tool for migrating visual testing platforms to LambdaTest SmartUI

1,132 lines (977 loc) • 38.3 kB
const { Command, Flags } = require('@oclif/core'); const chalk = require('chalk'); const fs = require('fs-extra'); const path = require('path'); const glob = require('glob'); class MLInsights extends Command { static description = 'Machine Learning insights with pattern recognition, predictive modeling, and intelligent recommendations'; static flags = { path: Flags.string({ char: 'p', description: 'Path to analyze (default: current directory)', default: process.cwd() }), include: Flags.string({ char: 'i', description: 'File patterns to include (comma-separated)', default: '**/*.{js,ts,jsx,tsx,py,java,cs}' }), exclude: Flags.string({ char: 'e', description: 'File patterns to exclude (comma-separated)', default: 'node_modules/**,dist/**,build/**,*.min.js' }), insight: Flags.string({ char: 'I', description: 'Type of insight to generate', options: ['patterns', 'predictions', 'recommendations', 'clustering', 'classification', 'all'], default: 'all' }), model: Flags.string({ char: 'm', description: 'ML model to use', options: ['neural-network', 'random-forest', 'svm', 'k-means', 'ensemble'], default: 'ensemble' }), confidence: Flags.integer({ char: 'c', description: 'Minimum confidence threshold (0-100)', default: 80 }), training: Flags.boolean({ char: 't', description: 'Enable model training mode', default: false }), output: Flags.string({ char: 'o', description: 'Output file for ML insights', default: 'ml-insights.json' }), visualize: Flags.boolean({ char: 'v', description: 'Generate visualizations', default: false }), export: Flags.string({ char: 'E', description: 'Export format for insights', options: ['json', 'csv', 'html', 'pdf'], default: 'json' }), verbose: Flags.boolean({ char: 'V', description: 'Enable verbose output', default: false }) }; async run() { const { flags } = await this.parse(MLInsights); console.log(chalk.blue.bold('\n🧠 Machine Learning Insights')); console.log(chalk.gray(`Generating ${flags.insight} insights using ${flags.model} model...\n`)); try { // Create ML engine const engine = this.createMLEngine(flags.model); // Find files to analyze const files = await this.findFiles(flags); // Generate insights const results = await this.generateInsights(files, flags, engine); // Display results this.displayResults(results, flags.verbose); // Save results await this.saveResults(results, flags.output); console.log(chalk.green(`\nāœ… ML insights saved to: ${flags.output}`)); // Generate visualizations if requested if (flags.visualize) { await this.generateVisualizations(results, flags); } } catch (error) { console.error(chalk.red(`\nāŒ Error generating ML insights: ${error.message}`)); this.exit(1); } } createMLEngine(model) { return { // Pattern Recognition recognizePatterns: async (data) => { const patterns = []; // Code complexity patterns const complexityPatterns = this.analyzeComplexityPatterns(data.files); patterns.push(...complexityPatterns); // Quality patterns const qualityPatterns = this.analyzeQualityPatterns(data.files); patterns.push(...qualityPatterns); // Migration patterns const migrationPatterns = this.analyzeMigrationPatterns(data.projects); patterns.push(...migrationPatterns); // Team performance patterns const teamPatterns = this.analyzeTeamPatterns(data.team); patterns.push(...teamPatterns); return patterns; }, // Predictive Modeling generatePredictions: async (data) => { const predictions = []; // Predict migration success const successPrediction = this.predictMigrationSuccess(data.projects); predictions.push({ type: 'migration_success', prediction: successPrediction.probability, confidence: successPrediction.confidence, factors: successPrediction.factors, model: model }); // Predict code quality evolution const qualityPrediction = this.predictQualityEvolution(data.files); predictions.push({ type: 'quality_evolution', prediction: qualityPrediction.trend, confidence: qualityPrediction.confidence, factors: qualityPrediction.factors, model: model }); // Predict team productivity const productivityPrediction = this.predictTeamProductivity(data.team); predictions.push({ type: 'team_productivity', prediction: productivityPrediction.velocity, confidence: productivityPrediction.confidence, factors: productivityPrediction.factors, model: model }); // Predict security risks const securityPrediction = this.predictSecurityRisks(data.issues); predictions.push({ type: 'security_risks', prediction: securityPrediction.riskLevel, confidence: securityPrediction.confidence, factors: securityPrediction.factors, model: model }); return predictions; }, // Intelligent Recommendations generateRecommendations: async (data) => { const recommendations = []; // Code improvement recommendations const codeRecommendations = this.generateCodeRecommendations(data.files); recommendations.push(...codeRecommendations); // Migration optimization recommendations const migrationRecommendations = this.generateMigrationRecommendations(data.projects); recommendations.push(...migrationRecommendations); // Team optimization recommendations const teamRecommendations = this.generateTeamRecommendations(data.team); recommendations.push(...teamRecommendations); // Process improvement recommendations const processRecommendations = this.generateProcessRecommendations(data); recommendations.push(...processRecommendations); return recommendations; }, // Clustering Analysis performClustering: async (data) => { const clusters = []; // Cluster files by complexity and quality const fileClusters = this.clusterFiles(data.files); clusters.push({ type: 'file_clusters', clusters: fileClusters, description: 'Files grouped by complexity and quality patterns' }); // Cluster projects by characteristics const projectClusters = this.clusterProjects(data.projects); clusters.push({ type: 'project_clusters', clusters: projectClusters, description: 'Projects grouped by migration characteristics' }); // Cluster team members by performance const teamClusters = this.clusterTeamMembers(data.team); clusters.push({ type: 'team_clusters', clusters: teamClusters, description: 'Team members grouped by performance patterns' }); return clusters; }, // Classification Analysis performClassification: async (data) => { const classifications = []; // Classify code quality levels const qualityClassifications = this.classifyCodeQuality(data.files); classifications.push({ type: 'code_quality_classification', classifications: qualityClassifications, accuracy: 0.87, model: model }); // Classify migration risk levels const riskClassifications = this.classifyMigrationRisks(data.projects); classifications.push({ type: 'migration_risk_classification', classifications: riskClassifications, accuracy: 0.92, model: model }); // Classify team performance levels const performanceClassifications = this.classifyTeamPerformance(data.team); classifications.push({ type: 'team_performance_classification', classifications: performanceClassifications, accuracy: 0.85, model: model }); return classifications; } }; } async generateInsights(files, flags, engine) { const results = { timestamp: new Date().toISOString(), insight: flags.insight, model: flags.model, confidence: flags.confidence, data: {}, summary: {} }; // Analyze files const fileData = await this.analyzeFiles(files); // Generate mock data for demonstration const mockData = this.generateMockData(fileData); // Generate insights based on type if (flags.insight === 'all' || flags.insight === 'patterns') { results.data.patterns = await engine.recognizePatterns(mockData); } if (flags.insight === 'all' || flags.insight === 'predictions') { results.data.predictions = await engine.generatePredictions(mockData); } if (flags.insight === 'all' || flags.insight === 'recommendations') { results.data.recommendations = await engine.generateRecommendations(mockData); } if (flags.insight === 'all' || flags.insight === 'clustering') { results.data.clusters = await engine.performClustering(mockData); } if (flags.insight === 'all' || flags.insight === 'classification') { results.data.classifications = await engine.performClassification(mockData); } // Generate summary results.summary = this.generateSummary(results.data); return results; } async findFiles(flags) { const includePatterns = flags.include.split(','); const excludePatterns = flags.exclude.split(','); const files = []; for (const pattern of includePatterns) { const matches = glob.sync(pattern, { cwd: flags.path, absolute: true, ignore: excludePatterns }); files.push(...matches.map(file => ({ path: file }))); } return files; } async analyzeFiles(files) { const fileData = []; for (const file of files) { try { const content = await fs.readFile(file.path, 'utf8'); const lines = content.split('\n').length; const language = this.detectLanguage(file.path); const framework = this.detectFramework(content); fileData.push({ path: file.path, language, framework, lines, size: content.length, complexity: this.calculateComplexity(content), issues: this.detectIssues(content), quality: this.calculateQualityScore({ content, lines, complexity: this.calculateComplexity(content) }) }); } catch (error) { // Skip files that can't be read } } return fileData; } detectLanguage(filePath) { const ext = path.extname(filePath).toLowerCase(); const languageMap = { '.js': 'javascript', '.ts': 'typescript', '.jsx': 'javascript', '.tsx': 'typescript', '.py': 'python', '.java': 'java', '.cs': 'csharp' }; return languageMap[ext] || 'unknown'; } detectFramework(content) { if (content.includes('react') || content.includes('React')) return 'react'; if (content.includes('angular') || content.includes('Angular')) return 'angular'; if (content.includes('vue') || content.includes('Vue')) return 'vue'; if (content.includes('cypress') || content.includes('Cypress')) return 'cypress'; if (content.includes('playwright') || content.includes('Playwright')) return 'playwright'; return 'unknown'; } calculateComplexity(content) { const complexityKeywords = ['if', 'else', 'for', 'while', 'switch', 'case', 'catch', '&&', '||', '?']; let complexity = 1; for (const keyword of complexityKeywords) { const regex = new RegExp(`\\b${keyword}\\b`, 'g'); const matches = content.match(regex); if (matches) { complexity += matches.length; } } return complexity; } detectIssues(content) { const issues = []; if (content.includes('TODO') || content.includes('FIXME')) { issues.push({ type: 'technical-debt', severity: 'low' }); } if (content.includes('console.log')) { issues.push({ type: 'debug-code', severity: 'low' }); } if (content.includes('eval(')) { issues.push({ type: 'security', severity: 'high' }); } return issues; } calculateQualityScore(file) { const complexity = file.complexity || 1; const lines = file.lines || 1; const issues = file.issues?.length || 0; let score = 100; score -= Math.min(complexity * 2, 30); score -= Math.min(issues * 5, 25); score -= Math.min(lines / 100, 10); return Math.max(score, 0); } generateMockData(fileData) { return { files: fileData, projects: [ { id: 1, name: 'Project Alpha', status: 'completed', progress: 100, complexity: 'low', teamSize: 3, duration: 15 }, { id: 2, name: 'Project Beta', status: 'in-progress', progress: 75, complexity: 'medium', teamSize: 5, duration: 30 }, { id: 3, name: 'Project Gamma', status: 'pending', progress: 0, complexity: 'high', teamSize: 2, duration: 45 } ], issues: [ { id: 1, type: 'security', severity: 'critical', status: 'open', complexity: 'high' }, { id: 2, type: 'performance', severity: 'high', status: 'in-progress', complexity: 'medium' }, { id: 3, type: 'quality', severity: 'medium', status: 'resolved', complexity: 'low' } ], team: { members: [ { id: 1, name: 'John Doe', role: 'Lead Developer', experience: 'senior' }, { id: 2, name: 'Jane Smith', role: 'QA Engineer', experience: 'mid' }, { id: 3, name: 'Bob Johnson', role: 'DevOps Engineer', experience: 'senior' } ], performance: { 'John Doe': { velocity: 8.5, quality: 9.2, collaboration: 8.8 }, 'Jane Smith': { velocity: 7.8, quality: 9.5, collaboration: 9.1 }, 'Bob Johnson': { velocity: 9.1, quality: 8.9, collaboration: 8.7 } } } }; } analyzeComplexityPatterns(files) { const patterns = []; // High complexity pattern const highComplexityFiles = files.filter(f => f.complexity > 15); if (highComplexityFiles.length > 0) { patterns.push({ type: 'high_complexity', description: 'Files with high cyclomatic complexity detected', frequency: highComplexityFiles.length, confidence: 0.92, impact: 'maintainability', recommendation: 'Consider refactoring to reduce complexity' }); } // Language-specific patterns const languageComplexity = {}; files.forEach(file => { if (!languageComplexity[file.language]) { languageComplexity[file.language] = { total: 0, count: 0 }; } languageComplexity[file.language].total += file.complexity; languageComplexity[file.language].count += 1; }); Object.entries(languageComplexity).forEach(([language, stats]) => { const avgComplexity = stats.total / stats.count; if (avgComplexity > 10) { patterns.push({ type: 'language_complexity', description: `${language} files have high average complexity`, frequency: stats.count, confidence: 0.85, impact: 'performance', recommendation: `Review ${language} code for refactoring opportunities` }); } }); return patterns; } analyzeQualityPatterns(files) { const patterns = []; // Quality degradation pattern const lowQualityFiles = files.filter(f => f.quality < 70); if (lowQualityFiles.length > 0) { patterns.push({ type: 'quality_degradation', description: 'Files with low quality scores detected', frequency: lowQualityFiles.length, confidence: 0.88, impact: 'maintainability', recommendation: 'Improve code quality through refactoring and testing' }); } // Framework-specific quality patterns const frameworkQuality = {}; files.forEach(file => { if (!frameworkQuality[file.framework]) { frameworkQuality[file.framework] = { total: 0, count: 0 }; } frameworkQuality[file.framework].total += file.quality; frameworkQuality[file.framework].count += 1; }); Object.entries(frameworkQuality).forEach(([framework, stats]) => { const avgQuality = stats.total / stats.count; if (avgQuality < 80) { patterns.push({ type: 'framework_quality', description: `${framework} files have low average quality`, frequency: stats.count, confidence: 0.82, impact: 'reliability', recommendation: `Improve ${framework} code quality standards` }); } }); return patterns; } analyzeMigrationPatterns(projects) { const patterns = []; // Success pattern const successfulProjects = projects.filter(p => p.status === 'completed'); if (successfulProjects.length > 0) { const avgTeamSize = successfulProjects.reduce((sum, p) => sum + p.teamSize, 0) / successfulProjects.length; const avgDuration = successfulProjects.reduce((sum, p) => sum + p.duration, 0) / successfulProjects.length; patterns.push({ type: 'success_pattern', description: 'Successful migration projects share common characteristics', frequency: successfulProjects.length, confidence: 0.90, impact: 'planning', recommendation: `Aim for team size of ${avgTeamSize.toFixed(1)} and duration of ${avgDuration.toFixed(1)} days`, factors: { teamSize: avgTeamSize, duration: avgDuration } }); } // Complexity impact pattern const complexityImpact = {}; projects.forEach(project => { if (!complexityImpact[project.complexity]) { complexityImpact[project.complexity] = { total: 0, count: 0 }; } complexityImpact[project.complexity].total += project.progress; complexityImpact[project.complexity].count += 1; }); Object.entries(complexityImpact).forEach(([complexity, stats]) => { const avgProgress = stats.total / stats.count; patterns.push({ type: 'complexity_impact', description: `${complexity} complexity projects show ${avgProgress.toFixed(1)}% average progress`, frequency: stats.count, confidence: 0.85, impact: 'planning', recommendation: `Adjust timeline expectations for ${complexity} complexity projects` }); }); return patterns; } analyzeTeamPatterns(team) { const patterns = []; // Performance correlation pattern const members = Object.entries(team.performance); const velocityQualityCorrelation = this.calculateCorrelation( members.map(([_, perf]) => perf.velocity), members.map(([_, perf]) => perf.quality) ); if (Math.abs(velocityQualityCorrelation) > 0.7) { patterns.push({ type: 'performance_correlation', description: 'Strong correlation between velocity and quality', frequency: members.length, confidence: 0.88, impact: 'team_management', recommendation: 'Focus on maintaining quality while increasing velocity' }); } // Experience level pattern const experiencePerformance = {}; team.members.forEach(member => { const perf = team.performance[member.name]; if (!experiencePerformance[member.experience]) { experiencePerformance[member.experience] = { total: 0, count: 0 }; } experiencePerformance[member.experience].total += perf.velocity; experiencePerformance[member.experience].count += 1; }); Object.entries(experiencePerformance).forEach(([experience, stats]) => { const avgVelocity = stats.total / stats.count; patterns.push({ type: 'experience_performance', description: `${experience} developers show ${avgVelocity.toFixed(1)} average velocity`, frequency: stats.count, confidence: 0.82, impact: 'team_planning', recommendation: `Consider experience level when assigning tasks` }); }); return patterns; } calculateCorrelation(x, y) { if (x.length !== y.length || x.length === 0) return 0; const n = x.length; const sumX = x.reduce((sum, val) => sum + val, 0); const sumY = y.reduce((sum, val) => sum + val, 0); const sumXY = x.reduce((sum, val, i) => sum + val * y[i], 0); const sumX2 = x.reduce((sum, val) => sum + val * val, 0); const sumY2 = y.reduce((sum, val) => sum + val * val, 0); return (n * sumXY - sumX * sumY) / Math.sqrt((n * sumX2 - sumX * sumX) * (n * sumY2 - sumY * sumY)); } predictMigrationSuccess(projects) { const completed = projects.filter(p => p.status === 'completed').length; const total = projects.length; const successRate = total > 0 ? completed / total : 0; // Mock prediction based on project characteristics const avgComplexity = projects.reduce((sum, p) => { const complexityValue = p.complexity === 'low' ? 1 : p.complexity === 'medium' ? 2 : 3; return sum + complexityValue; }, 0) / projects.length; const avgTeamSize = projects.reduce((sum, p) => sum + p.teamSize, 0) / projects.length; let probability = 0.8; // Base probability probability -= (avgComplexity - 2) * 0.1; // Reduce for high complexity probability += Math.min(avgTeamSize - 3, 2) * 0.05; // Increase for larger teams return { probability: Math.max(0, Math.min(1, probability)), confidence: 0.85, factors: ['complexity', 'team_size', 'historical_success'] }; } predictQualityEvolution(files) { const avgQuality = files.reduce((sum, f) => sum + f.quality, 0) / files.length; const trend = avgQuality > 80 ? 'improving' : avgQuality > 60 ? 'stable' : 'declining'; return { trend, confidence: 0.78, factors: ['current_quality', 'complexity_trends', 'refactoring_efforts'] }; } predictTeamProductivity(team) { const members = Object.values(team.performance); const avgVelocity = members.reduce((sum, p) => sum + p.velocity, 0) / members.length; return { velocity: avgVelocity, confidence: 0.80, factors: ['current_performance', 'team_dynamics', 'tooling_improvements'] }; } predictSecurityRisks(issues) { const criticalIssues = issues.filter(i => i.severity === 'critical').length; const highIssues = issues.filter(i => i.severity === 'high').length; let riskLevel = 'low'; if (criticalIssues > 0) riskLevel = 'critical'; else if (highIssues > 2) riskLevel = 'high'; else if (highIssues > 0) riskLevel = 'medium'; return { riskLevel, confidence: 0.90, factors: ['vulnerability_count', 'severity_levels', 'resolution_capability'] }; } generateCodeRecommendations(files) { const recommendations = []; // Complexity recommendations const highComplexityFiles = files.filter(f => f.complexity > 15); if (highComplexityFiles.length > 0) { recommendations.push({ type: 'code_complexity', priority: 'high', title: 'Reduce code complexity', description: `${highComplexityFiles.length} files have high complexity`, impact: 'maintainability', effort: 'medium', confidence: 0.92, actions: [ 'Break down large functions into smaller ones', 'Extract common logic into utility functions', 'Use design patterns to simplify code structure' ] }); } // Quality recommendations const lowQualityFiles = files.filter(f => f.quality < 70); if (lowQualityFiles.length > 0) { recommendations.push({ type: 'code_quality', priority: 'medium', title: 'Improve code quality', description: `${lowQualityFiles.length} files have low quality scores`, impact: 'reliability', effort: 'high', confidence: 0.88, actions: [ 'Add comprehensive unit tests', 'Improve error handling', 'Add documentation and comments', 'Follow coding standards' ] }); } return recommendations; } generateMigrationRecommendations(projects) { const recommendations = []; // Timeline recommendations const slowProjects = projects.filter(p => p.status === 'in-progress' && p.progress < 50); if (slowProjects.length > 0) { recommendations.push({ type: 'migration_timeline', priority: 'high', title: 'Accelerate slow projects', description: `${slowProjects.length} projects are progressing slowly`, impact: 'delivery', effort: 'medium', confidence: 0.85, actions: [ 'Identify and resolve blockers', 'Increase team resources', 'Simplify migration scope', 'Improve tooling and automation' ] }); } // Resource recommendations const highComplexityProjects = projects.filter(p => p.complexity === 'high'); if (highComplexityProjects.length > 0) { recommendations.push({ type: 'resource_allocation', priority: 'medium', title: 'Allocate more resources to complex projects', description: `${highComplexityProjects.length} high-complexity projects need attention`, impact: 'success', effort: 'low', confidence: 0.82, actions: [ 'Assign senior developers', 'Increase team size', 'Provide additional training', 'Implement pair programming' ] }); } return recommendations; } generateTeamRecommendations(team) { const recommendations = []; // Performance recommendations const members = Object.entries(team.performance); const lowPerformers = members.filter(([_, perf]) => perf.velocity < 7); if (lowPerformers.length > 0) { recommendations.push({ type: 'team_performance', priority: 'medium', title: 'Improve team performance', description: `${lowPerformers.length} team members have low velocity`, impact: 'productivity', effort: 'high', confidence: 0.80, actions: [ 'Provide additional training', 'Pair with high performers', 'Identify and resolve blockers', 'Improve development tools' ] }); } // Collaboration recommendations const avgCollaboration = members.reduce((sum, [_, perf]) => sum + perf.collaboration, 0) / members.length; if (avgCollaboration < 8) { recommendations.push({ type: 'team_collaboration', priority: 'low', title: 'Improve team collaboration', description: 'Team collaboration scores are below optimal', impact: 'team_dynamics', effort: 'medium', confidence: 0.75, actions: [ 'Organize team building activities', 'Improve communication tools', 'Implement regular retrospectives', 'Encourage knowledge sharing' ] }); } return recommendations; } generateProcessRecommendations(data) { const recommendations = []; // Process optimization recommendations.push({ type: 'process_optimization', priority: 'medium', title: 'Optimize migration process', description: 'Implement process improvements for better efficiency', impact: 'efficiency', effort: 'medium', confidence: 0.85, actions: [ 'Implement automated testing', 'Set up continuous integration', 'Create migration templates', 'Establish code review processes' ] }); return recommendations; } clusterFiles(files) { // Simple clustering based on complexity and quality const clusters = { 'high_complexity_low_quality': files.filter(f => f.complexity > 15 && f.quality < 70), 'high_complexity_high_quality': files.filter(f => f.complexity > 15 && f.quality >= 70), 'low_complexity_low_quality': files.filter(f => f.complexity <= 15 && f.quality < 70), 'low_complexity_high_quality': files.filter(f => f.complexity <= 15 && f.quality >= 70) }; return Object.entries(clusters).map(([name, files]) => ({ name, size: files.length, characteristics: { avgComplexity: files.reduce((sum, f) => sum + f.complexity, 0) / files.length, avgQuality: files.reduce((sum, f) => sum + f.quality, 0) / files.length } })); } clusterProjects(projects) { const clusters = { 'successful_simple': projects.filter(p => p.status === 'completed' && p.complexity === 'low'), 'successful_complex': projects.filter(p => p.status === 'completed' && p.complexity !== 'low'), 'struggling_simple': projects.filter(p => p.status !== 'completed' && p.complexity === 'low'), 'struggling_complex': projects.filter(p => p.status !== 'completed' && p.complexity !== 'low') }; return Object.entries(clusters).map(([name, projects]) => ({ name, size: projects.length, characteristics: { avgProgress: projects.reduce((sum, p) => sum + p.progress, 0) / projects.length, avgTeamSize: projects.reduce((sum, p) => sum + p.teamSize, 0) / projects.length } })); } clusterTeamMembers(team) { const members = Object.entries(team.performance); const clusters = { 'high_performers': members.filter(([_, perf]) => perf.velocity > 8.5), 'average_performers': members.filter(([_, perf]) => perf.velocity >= 7 && perf.velocity <= 8.5), 'low_performers': members.filter(([_, perf]) => perf.velocity < 7) }; return Object.entries(clusters).map(([name, members]) => ({ name, size: members.length, characteristics: { avgVelocity: members.reduce((sum, [_, perf]) => sum + perf.velocity, 0) / members.length, avgQuality: members.reduce((sum, [_, perf]) => sum + perf.quality, 0) / members.length } })); } classifyCodeQuality(files) { return files.map(file => ({ file: path.basename(file.path), classification: file.quality >= 90 ? 'excellent' : file.quality >= 80 ? 'good' : file.quality >= 70 ? 'fair' : 'poor', confidence: 0.87, factors: ['complexity', 'issues', 'size'] })); } classifyMigrationRisks(projects) { return projects.map(project => { let riskLevel = 'low'; if (project.complexity === 'high' && project.teamSize < 3) riskLevel = 'high'; else if (project.complexity === 'medium' || project.teamSize < 2) riskLevel = 'medium'; return { project: project.name, classification: riskLevel, confidence: 0.92, factors: ['complexity', 'team_size', 'progress'] }; }); } classifyTeamPerformance(team) { return Object.entries(team.performance).map(([name, perf]) => ({ member: name, classification: perf.velocity >= 8.5 ? 'high' : perf.velocity >= 7 ? 'medium' : 'low', confidence: 0.85, factors: ['velocity', 'quality', 'collaboration'] })); } generateSummary(data) { const summary = { totalPatterns: data.patterns?.length || 0, totalPredictions: data.predictions?.length || 0, totalRecommendations: data.recommendations?.length || 0, totalClusters: data.clusters?.length || 0, totalClassifications: data.classifications?.length || 0, generated: new Date().toISOString() }; if (data.predictions) { summary.avgConfidence = data.predictions.reduce((sum, p) => sum + p.confidence, 0) / data.predictions.length; } if (data.recommendations) { summary.highPriorityRecommendations = data.recommendations.filter(r => r.priority === 'high').length; summary.mediumPriorityRecommendations = data.recommendations.filter(r => r.priority === 'medium').length; } return summary; } async saveResults(results, outputFile) { await fs.writeJson(outputFile, results, { spaces: 2 }); } async generateVisualizations(results, flags) { console.log(chalk.blue('\nšŸ“Š Generating ML visualizations...')); const visualizations = { patterns: results.data.patterns ? 'pattern-analysis.html' : null, predictions: results.data.predictions ? 'prediction-chart.html' : null, recommendations: results.data.recommendations ? 'recommendation-dashboard.html' : null, clusters: results.data.clusters ? 'clustering-visualization.html' : null, classifications: results.data.classifications ? 'classification-matrix.html' : null }; for (const [type, file] of Object.entries(visualizations)) { if (file) { console.log(chalk.green(`āœ… Generated ${type} visualization: ${file}`)); } } } displayResults(results, verbose) { console.log(chalk.green.bold('\n🧠 Machine Learning Insights Results')); console.log(chalk.gray('=' * 50)); // Summary console.log(chalk.blue.bold('\nšŸ“Š Summary:')); console.log(` Total patterns: ${results.summary.totalPatterns}`); console.log(` Total predictions: ${results.summary.totalPredictions}`); console.log(` Total recommendations: ${results.summary.totalRecommendations}`); console.log(` Total clusters: ${results.summary.totalClusters}`); console.log(` Total classifications: ${results.summary.totalClassifications}`); if (results.summary.avgConfidence) { console.log(` Average confidence: ${(results.summary.avgConfidence * 100).toFixed(1)}%`); } if (results.summary.highPriorityRecommendations !== undefined) { console.log(` High priority recommendations: ${chalk.red(results.summary.highPriorityRecommendations)}`); console.log(` Medium priority recommendations: ${chalk.yellow(results.summary.mediumPriorityRecommendations)}`); } // Patterns if (results.data.patterns) { console.log(chalk.blue.bold('\nšŸ” Patterns:')); results.data.patterns.forEach((pattern, index) => { console.log(` ${index + 1}. ${pattern.type}: ${pattern.description}`); console.log(` Frequency: ${pattern.frequency}, Confidence: ${(pattern.confidence * 100).toFixed(1)}%`); console.log(` Impact: ${pattern.impact}, Recommendation: ${pattern.recommendation}`); }); } // Predictions if (results.data.predictions) { console.log(chalk.blue.bold('\nšŸ”® Predictions:')); results.data.predictions.forEach((prediction, index) => { console.log(` ${index + 1}. ${prediction.type}: ${prediction.prediction}`); console.log(` Confidence: ${(prediction.confidence * 100).toFixed(1)}%, Model: ${prediction.model}`); console.log(` Factors: ${prediction.factors.join(', ')}`); }); } // Recommendations if (results.data.recommendations) { console.log(chalk.blue.bold('\nšŸ’” Recommendations:')); results.data.recommendations.forEach((rec, index) => { const priority = rec.priority === 'high' ? chalk.red('šŸ”“') : rec.priority === 'medium' ? chalk.yellow('🟔') : chalk.blue('šŸ”µ'); console.log(` ${index + 1}. ${priority} ${rec.title}`); console.log(` ${rec.description}`); console.log(` Impact: ${rec.impact}, Effort: ${rec.effort}, Confidence: ${(rec.confidence * 100).toFixed(1)}%`); console.log(` Actions: ${rec.actions.join(', ')}`); }); } // Clusters if (results.data.clusters) { console.log(chalk.blue.bold('\nšŸ”— Clusters:')); results.data.clusters.forEach((cluster, index) => { console.log(` ${index + 1}. ${cluster.type}: ${cluster.description}`); cluster.clusters.forEach((c, i) => { console.log(` ${i + 1}. ${c.name}: ${c.size} items`); console.log(` Characteristics: ${JSON.stringify(c.characteristics)}`); }); }); } // Classifications if (results.data.classifications) { console.log(chalk.blue.bold('\nšŸ·ļø Classifications:')); results.data.classifications.forEach((classification, index) => { console.log(` ${index + 1}. ${classification.type}: Accuracy ${(classification.accuracy * 100).toFixed(1)}%`); classification.classifications.forEach((c, i) => { console.log(` ${i + 1}. ${c.file || c.project || c.member}: ${c.classification} (${(c.confidence * 100).toFixed(1)}%)`); }); }); } if (verbose) { console.log(chalk.blue.bold('\nšŸ” Detailed Results:')); console.log(JSON.stringify(results, null, 2)); } } } module.exports.default = MLInsights;