UNPKG

skimr

Version:

CLI EDA for CSVs

457 lines (427 loc) 122 kB
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta name="generator" content="pandoc" /> <meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="author" content="Yihui Xie" /> <meta name="date" content="2023-10-26" /> <title>Not An Introduction to knitr</title> <script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to // be compatible with the behavior of Pandoc < 2.8). document.addEventListener('DOMContentLoaded', function(e) { var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); var i, h, a; for (i = 0; i < hs.length; i++) { h = hs[i]; if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 a = h.attributes; while (a.length > 0) h.removeAttribute(a[0].name); } }); </script> <style type="text/css"> code{white-space: pre-wrap;} span.smallcaps{font-variant: small-caps;} span.underline{text-decoration: underline;} div.column{display: inline-block; vertical-align: top; width: 50%;} div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} ul.task-list{list-style: none;} </style> <style type="text/css"> code { white-space: pre; } .sourceCode { overflow: visible; } </style> <style type="text/css" data-origin="pandoc"> pre > code.sourceCode { white-space: pre; position: relative; } pre > code.sourceCode > span { display: inline-block; line-height: 1.25; } pre > code.sourceCode > span:empty { height: 1.2em; } .sourceCode { overflow: visible; } code.sourceCode > span { color: inherit; text-decoration: inherit; } div.sourceCode { margin: 1em 0; } pre.sourceCode { margin: 0; } @media screen { div.sourceCode { overflow: auto; } } @media print { pre > code.sourceCode { white-space: pre-wrap; } pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; } } pre.numberSource code { counter-reset: source-line 0; } pre.numberSource code > span { position: relative; left: -4em; counter-increment: source-line; } pre.numberSource code > span > a:first-child::before { content: counter(source-line); position: relative; left: -1em; text-align: right; vertical-align: baseline; border: none; display: inline-block; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; padding: 0 4px; width: 4em; color: #aaaaaa; } pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode { } @media screen { pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } } code span.al { color: #ff0000; font-weight: bold; } code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } code span.at { color: #7d9029; } code span.bn { color: #40a070; } code span.bu { color: #008000; } code span.cf { color: #007020; font-weight: bold; } code span.ch { color: #4070a0; } code span.cn { color: #880000; } code span.co { color: #60a0b0; font-style: italic; } code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } code span.do { color: #ba2121; font-style: italic; } code span.dt { color: #902000; } code span.dv { color: #40a070; } code span.er { color: #ff0000; font-weight: bold; } code span.ex { } code span.fl { color: #40a070; } code span.fu { color: #06287e; } code span.im { color: #008000; font-weight: bold; } code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } code span.kw { color: #007020; font-weight: bold; } code span.op { color: #666666; } code span.ot { color: #007020; } code span.pp { color: #bc7a00; } code span.sc { color: #4070a0; } code span.ss { color: #bb6688; } code span.st { color: #4070a0; } code span.va { color: #19177c; } code span.vs { color: #4070a0; } code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } </style> <script> // apply pandoc div.sourceCode style to pre.sourceCode instead (function() { var sheets = document.styleSheets; for (var i = 0; i < sheets.length; i++) { if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue; try { var rules = sheets[i].cssRules; } catch (e) { continue; } var j = 0; while (j < rules.length) { var rule = rules[j]; // check if there is a div.sourceCode rule if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") { j++; continue; } var style = rule.style.cssText; // check if color or background-color is set if (rule.style.color === '' && rule.style.backgroundColor === '') { j++; continue; } // replace div.sourceCode by a pre.sourceCode rule sheets[i].deleteRule(j); sheets[i].insertRule('pre.sourceCode{' + style + '}', j); } } })(); </script> <style type="text/css"> div.csl-bib-body { } div.csl-entry { clear: both; } .hanging div.csl-entry { margin-left:2em; text-indent:-2em; } div.csl-left-margin { min-width:2em; float:left; } div.csl-right-inline { margin-left:2em; padding-left:1em; } div.csl-indent { margin-left: 2em; } </style> <style type="text/css">body { background-color: #fff; margin: 1em auto; max-width: 800px; overflow: visible; padding-left: 2em; padding-right: 2em; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 14px; line-height: 20px; } #header { text-align: center; } #TOC { clear: both; margin: 0 0 10px 0; padding: 4px; border: 1px solid #CCCCCC; border-radius: 5px; background-color: #f6f6f6; font-size: 13px; line-height: 1.3; } #TOC .toctitle { font-weight: bold; font-size: 15px; margin-left: 5px; } #TOC ul { padding-left: 40px; margin-left: -1.5em; margin-top: 5px; margin-bottom: 5px; } #TOC ul ul { margin-left: -2em; } #TOC li { line-height: 16px; } table:not([class]) { margin: auto; min-width: 40%; border-width: 1px; border-color: #DDDDDD; border-style: outset; border-collapse: collapse; } table[summary="R argblock"] { width: 100%; border: none; } table:not([class]) th { border-width: 2px; padding: 5px; border-style: inset; } table:not([class]) td { border-width: 1px; border-style: inset; line-height: 18px; padding: 5px 5px; } table:not([class]), table:not([class]) th, table:not([class]) td { border-left-style: none; border-right-style: none; } table:not([class]) tr.odd { background-color: #f7f7f7; } p { margin: 0.5em 0; } blockquote { background-color: #f6f6f6; padding: 13px; padding-bottom: 1px; } hr { border-style: solid; border: none; border-top: 1px solid #777; margin: 28px 0; } dl { margin-left: 0; } dl dd { margin-bottom: 13px; margin-left: 13px; } dl dt { font-weight: bold; } ul { margin-top: 0; } ul li { list-style: circle outside; } ul ul { margin-bottom: 0; } pre, code { background-color: #f5f5f5; border-radius: 3px; color: #333; } pre { overflow-x: auto; border-radius: 3px; margin: 5px 0 10px 0; padding: 10px; } pre:not([class]) { background-color: white; border: #f5f5f5 1px solid; } pre:not([class]) code { color: #444; background-color: white; } code { font-family: monospace; font-size: 90%; } p > code, li > code { padding: 2px 4px; color: #d14; border: 1px solid #e1e1e8; white-space: inherit; } div.figure { text-align: center; } table > caption, div.figure p.caption { font-style: italic; } table > caption span, div.figure p.caption span { font-style: normal; font-weight: bold; } p { margin: 0 0 10px; } table:not([class]) { margin: auto auto 10px auto; } img:not([class]) { background-color: #FFFFFF; padding: 2px; border-radius: 3px; border: 1px solid #CCCCCC; margin: 0 5px; max-width: 100%; } h1 { margin-top: 0; font-size: 35px; line-height: 40px; } h2 { border-bottom: 4px solid #f5f5f5; padding-top: 10px; padding-bottom: 2px; font-size: 145%; } h3 { border-bottom: 2px solid #f5f5f5; padding-top: 10px; font-size: 120%; } h4 { border-bottom: 1px solid #f5f5f5; margin-left: 8px; font-size: 105%; } h5, h6 { border-bottom: 1px solid #ccc; font-size: 105%; } a { color: #0033dd; text-decoration: none; } a:hover { color: #6666ff; } a:visited { color: #800080; } a:visited:hover { color: #BB00BB; } a[href^="http:"] { text-decoration: underline; } a[href^="https:"] { text-decoration: underline; } div.r-help-page { background-color: #f9f9f9; border-bottom: #ddd 1px solid; margin-bottom: 10px; padding: 10px; } div.r-help-page:hover { background-color: #f4f4f4; } code > span.kw { color: #555; font-weight: bold; } code > span.dt { color: #902000; } code > span.dv { color: #40a070; } code > span.bn { color: #d14; } code > span.fl { color: #d14; } code > span.ch { color: #d14; } code > span.st { color: #d14; } code > span.co { color: #888888; font-style: italic; } code > span.ot { color: #007020; } code > span.al { color: #ff0000; font-weight: bold; } code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; } </style> </head> <body> <h1 class="title toc-ignore">Not An Introduction to knitr</h1> <h4 class="author">Yihui Xie</h4> <h4 class="date">2023-10-26</h4> <p>The <strong>knitr</strong> package <span class="citation">(Xie 2016)</span> is an alternative tool to Sweave based on a different design with more features. This document is not an introduction, but only serves as a placeholder to guide you to the real manuals, which are available on the package website <a href="https://yihui.org/knitr/" class="uri">https://yihui.org/knitr/</a><a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a>, and remember to read the help pages of functions in this package. There is a book <span class="citation">(Xie 2015)</span> for this package, but it may not be useful to those who prefer digging out information on the web.</p> <p>Anyway, here is a code chunk that shows you can compile vignettes with <strong>knitr</strong> as well using R 3.0.x, which supports non-Sweave vignettes:</p> <div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">options</span>(<span class="at">digits =</span> <span class="dv">4</span>)</span> <span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">rnorm</span>(<span class="dv">20</span>)</span></code></pre></div> <pre><code>## [1] 1.388985 0.503036 -0.775036 1.806629 -0.555110 0.972180 -0.052065 ## [8] 0.248322 -0.637656 -0.505279 1.075536 -0.005766 0.300989 -1.102360 ## [15] 1.261733 -0.614662 0.660885 0.271355 0.714454 0.923132</code></pre> <div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a>fit <span class="ot">=</span> <span class="fu">lm</span>(dist <span class="sc">~</span> speed, <span class="at">data =</span> cars)</span> <span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">coef</span>(fit)</span></code></pre></div> <table> <caption>Regression coefficients.</caption> <thead> <tr class="header"> <th align="left"></th> <th align="right">Estimate</th> <th align="right">Std. Error</th> <th align="right">t value</th> <th align="right">Pr(&gt;|t|)</th> </tr> </thead> <tbody> <tr class="odd"> <td align="left">(Intercept)</td> <td align="right">-17.579</td> <td align="right">6.7584</td> <td align="right">-2.601</td> <td align="right">0.0123</td> </tr> <tr class="even"> <td align="left">speed</td> <td align="right">3.932</td> <td align="right">0.4155</td> <td align="right">9.464</td> <td align="right">0.0000</td> </tr> </tbody> </table> <p>The fitted regression equation is <span class="math inline">\(Y=-17.5791+3.9324x\)</span>.</p> <div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">par</span>(<span class="at">mar=</span><span class="fu">c</span>(<span class="dv">4</span>, <span class="dv">4</span>, <span class="dv">1</span>, .<span class="dv">1</span>))</span> <span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="fu">plot</span>(cars, <span class="at">pch =</span> <span class="dv">20</span>)</span> <span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="fu">abline</span>(fit, <span class="at">col =</span> <span class="st">&#39;red&#39;</span>)</span></code></pre></div> <div class="figure"> <img src="