simplify-path
Version:
simplify 2D polyline
63 lines (48 loc) • 1.61 kB
JavaScript
// square distance from a point to a segment
function getSqSegDist(p, p1, p2) {
var x = p1[0],
y = p1[1],
dx = p2[0] - x,
dy = p2[1] - y;
if (dx !== 0 || dy !== 0) {
var t = ((p[0] - x) * dx + (p[1] - y) * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = p2[0];
y = p2[1];
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = p[0] - x;
dy = p[1] - y;
return dx * dx + dy * dy;
}
function simplifyDPStep(points, first, last, sqTolerance, simplified) {
var maxSqDist = sqTolerance,
index;
for (var i = first + 1; i < last; i++) {
var sqDist = getSqSegDist(points[i], points[first], points[last]);
if (sqDist > maxSqDist) {
index = i;
maxSqDist = sqDist;
}
}
if (maxSqDist > sqTolerance) {
if (index - first > 1) simplifyDPStep(points, first, index, sqTolerance, simplified);
simplified.push(points[index]);
if (last - index > 1) simplifyDPStep(points, index, last, sqTolerance, simplified);
}
}
// simplification using Ramer-Douglas-Peucker algorithm
module.exports = function simplifyDouglasPeucker(points, tolerance) {
if (points.length<=1)
return points;
tolerance = typeof tolerance === 'number' ? tolerance : 1;
var sqTolerance = tolerance * tolerance;
var last = points.length - 1;
var simplified = [points[0]];
simplifyDPStep(points, 0, last, sqTolerance, simplified);
simplified.push(points[last]);
return simplified;
}