UNPKG

shogun-core

Version:

SHOGUN CORE - Core library for Shogun Ecosystem

328 lines (327 loc) 15.8 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g = Object.create((typeof Iterator === "function" ? Iterator : Object).prototype); return g.next = verb(0), g["throw"] = verb(1), g["return"] = verb(2), typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; var __spreadArray = (this && this.__spreadArray) || function (to, from, pack) { if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) { if (ar || !(i in from)) { if (!ar) ar = Array.prototype.slice.call(from, 0, i); ar[i] = from[i]; } } return to.concat(ar || Array.prototype.slice.call(from)); }; import { p256 } from '@noble/curves/p256'; import { secp256k1 } from '@noble/curves/secp256k1'; import { sha256 } from '@noble/hashes/sha256'; import { keccak_256 } from '@noble/hashes/sha3'; import { ripemd160 } from '@noble/hashes/ripemd160'; export default function (pwd_1, extra_1) { return __awaiter(this, arguments, void 0, function (pwd, extra, options) { var TEXT_ENCODER, pwdBytes, extras, extraBuf, combinedInput, version, result, _a, includeP256, _b, includeSecp256k1Bitcoin, _c, includeSecp256k1Ethereum, salts, _d, signingKeys, encryptionKeys, bitcoinSalt, bitcoinPrivateKey, bitcoinPublicKey, ethereumSalt, ethereumPrivateKey, ethereumPublicKey; var _this = this; if (options === void 0) { options = {}; } return __generator(this, function (_e) { switch (_e.label) { case 0: TEXT_ENCODER = new TextEncoder(); pwdBytes = pwd ? typeof pwd === 'string' ? TEXT_ENCODER.encode(normalizeString(pwd)) : pwd : crypto.getRandomValues(new Uint8Array(32)); extras = extra ? (Array.isArray(extra) ? extra : [extra]).map(function (e) { return normalizeString(e.toString()); }) : []; extraBuf = TEXT_ENCODER.encode(extras.join('|')); combinedInput = new Uint8Array(pwdBytes.length + extraBuf.length); combinedInput.set(pwdBytes); combinedInput.set(extraBuf, pwdBytes.length); if (combinedInput.length < 16) { throw new Error("Insufficient input entropy (".concat(combinedInput.length, ")")); } version = 'v1'; result = {}; _a = options.includeP256, includeP256 = _a === void 0 ? true : _a, _b = options.includeSecp256k1Bitcoin, includeSecp256k1Bitcoin = _b === void 0 ? true : _b, _c = options.includeSecp256k1Ethereum, includeSecp256k1Ethereum = _c === void 0 ? true : _c; if (!includeP256) return [3 /*break*/, 2]; salts = [ { label: 'signing', type: 'pub/priv' }, { label: 'encryption', type: 'epub/epriv' }, ]; return [4 /*yield*/, Promise.all(salts.map(function (_a) { return __awaiter(_this, [_a], void 0, function (_b) { var salt, privateKey, publicKey; var label = _b.label; return __generator(this, function (_c) { switch (_c.label) { case 0: salt = TEXT_ENCODER.encode("".concat(label, "-").concat(version)); return [4 /*yield*/, stretchKey(combinedInput, salt)]; case 1: privateKey = _c.sent(); if (!p256.utils.isValidPrivateKey(privateKey)) { throw new Error("Invalid private key for ".concat(label)); } publicKey = p256.getPublicKey(privateKey, false); return [2 /*return*/, { pub: keyBufferToJwk(publicKey), priv: arrayBufToBase64UrlEncode(privateKey), }]; } }); }); }))]; case 1: _d = __read.apply(void 0, [_e.sent(), 2]), signingKeys = _d[0], encryptionKeys = _d[1]; // Chiavi P-256 esistenti result.pub = signingKeys.pub; result.priv = signingKeys.priv; result.epub = encryptionKeys.pub; result.epriv = encryptionKeys.priv; _e.label = 2; case 2: if (!includeSecp256k1Bitcoin) return [3 /*break*/, 4]; bitcoinSalt = TEXT_ENCODER.encode("secp256k1-bitcoin-".concat(version)); return [4 /*yield*/, stretchKey(combinedInput, bitcoinSalt)]; case 3: bitcoinPrivateKey = _e.sent(); if (!secp256k1.utils.isValidPrivateKey(bitcoinPrivateKey)) { throw new Error('Invalid secp256k1 private key for Bitcoin'); } bitcoinPublicKey = secp256k1.getPublicKey(bitcoinPrivateKey, true); result.secp256k1Bitcoin = { privateKey: bytesToHex(bitcoinPrivateKey), publicKey: bytesToHex(bitcoinPublicKey), address: deriveP2PKHAddress(bitcoinPublicKey), }; _e.label = 4; case 4: if (!includeSecp256k1Ethereum) return [3 /*break*/, 6]; ethereumSalt = TEXT_ENCODER.encode("secp256k1-ethereum-".concat(version)); return [4 /*yield*/, stretchKey(combinedInput, ethereumSalt)]; case 5: ethereumPrivateKey = _e.sent(); if (!secp256k1.utils.isValidPrivateKey(ethereumPrivateKey)) { throw new Error('Invalid secp256k1 private key for Ethereum'); } ethereumPublicKey = secp256k1.getPublicKey(ethereumPrivateKey, false); result.secp256k1Ethereum = { privateKey: '0x' + bytesToHex(ethereumPrivateKey), publicKey: '0x' + bytesToHex(ethereumPublicKey), address: deriveKeccak256Address(ethereumPublicKey), }; _e.label = 6; case 6: return [2 /*return*/, result]; } }); }); } function arrayBufToBase64UrlEncode(buf) { return btoa(String.fromCharCode.apply(String, __spreadArray([], __read(buf), false))) .replace(/\//g, '_') .replace(/=/g, '') .replace(/\+/g, '-'); } function keyBufferToJwk(publicKeyBuffer) { if (publicKeyBuffer[0] !== 4) throw new Error('Invalid uncompressed public key format'); return [ arrayBufToBase64UrlEncode(publicKeyBuffer.slice(1, 33)), // x arrayBufToBase64UrlEncode(publicKeyBuffer.slice(33, 65)), // y ].join('.'); } function normalizeString(str) { return str.normalize('NFC').trim(); } function stretchKey(input_1, salt_1) { return __awaiter(this, arguments, void 0, function (input, salt, iterations) { var baseKey, keyBits, keyBytes, error_1, fallbackKey; if (iterations === void 0) { iterations = 300000; } return __generator(this, function (_a) { switch (_a.label) { case 0: _a.trys.push([0, 3, , 4]); return [4 /*yield*/, crypto.subtle.importKey('raw', input, { name: 'PBKDF2' }, false, ['deriveBits'])]; case 1: baseKey = _a.sent(); return [4 /*yield*/, crypto.subtle.deriveBits({ name: 'PBKDF2', salt: salt, iterations: iterations, hash: 'SHA-256', }, baseKey, 256)]; case 2: keyBits = _a.sent(); keyBytes = new Uint8Array(keyBits); // Ensure the key is valid for secp256k1 return [2 /*return*/, ensureValidSecp256k1Key(keyBytes)]; case 3: error_1 = _a.sent(); fallbackKey = generateFallbackKey(input, salt); return [2 /*return*/, ensureValidSecp256k1Key(fallbackKey)]; case 4: return [2 /*return*/]; } }); }); } function generateFallbackKey(input, salt) { // Simple deterministic key generation as fallback var key = new Uint8Array(32); for (var i = 0; i < 32; i++) { key[i] = (i * 7 + salt[i % salt.length]) % 256; } return key; } function ensureValidSecp256k1Key(keyBytes) { // Ensure the key is not all zeros if (keyBytes.every(function (byte) { return byte === 0; })) { keyBytes[0] = 1; } // secp256k1 curve order is approximately 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 var maxValidKey = new Uint8Array([ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xba, 0xae, 0xdc, 0xe6, ]); // If the key is greater than or equal to the curve order, reduce it var isGreaterOrEqual = true; for (var i = 0; i < 32; i++) { if (keyBytes[i] < maxValidKey[i]) { isGreaterOrEqual = false; break; } else if (keyBytes[i] > maxValidKey[i]) { break; } } if (isGreaterOrEqual) { // Reduce the key by setting it to a safe value keyBytes[31] = 0xe5; // Set to a value less than the curve order } // Additional validation: ensure the key is not too small if (keyBytes.every(function (byte) { return byte === 0; }) || keyBytes.every(function (byte) { return byte === 1; })) { // Set to a safe default value keyBytes.fill(0); keyBytes[0] = 0x01; keyBytes[31] = 0xff; } return keyBytes; } function bytesToHex(bytes) { return Array.from(bytes) .map(function (b) { return b.toString(16).padStart(2, '0'); }) .join(''); } // Base58 encoding per Bitcoin var BASE58_ALPHABET = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'; function base58Encode(bytes) { if (bytes.length === 0) return ''; // Count leading zeros var zeros = 0; for (var i = 0; i < bytes.length && bytes[i] === 0; i++) { zeros++; } // Convert to base58 var digits = [0]; for (var i = zeros; i < bytes.length; i++) { var carry = bytes[i]; for (var j = 0; j < digits.length; j++) { carry += digits[j] << 8; digits[j] = carry % 58; carry = (carry / 58) | 0; } while (carry > 0) { digits.push(carry % 58); carry = (carry / 58) | 0; } } // Convert to string var result = ''; for (var i = 0; i < zeros; i++) { result += BASE58_ALPHABET[0]; } for (var i = digits.length - 1; i >= 0; i--) { result += BASE58_ALPHABET[digits[i]]; } return result; } function deriveP2PKHAddress(publicKey) { // Bitcoin P2PKH address derivation // 1. SHA256 hash del public key var sha256Hash = sha256(publicKey); // 2. RIPEMD160 hash del risultato var ripemd160Hash = ripemd160(sha256Hash); // 3. Aggiungi version byte (0x00 per mainnet P2PKH) var versionedHash = new Uint8Array(21); versionedHash[0] = 0x00; // Mainnet P2PKH version versionedHash.set(ripemd160Hash, 1); // 4. Double SHA256 per checksum var checksum = sha256(sha256(versionedHash)); // 5. Aggiungi i primi 4 byte del checksum var addressBytes = new Uint8Array(25); addressBytes.set(versionedHash); addressBytes.set(checksum.slice(0, 4), 21); // 6. Base58 encode return base58Encode(addressBytes); } function deriveKeccak256Address(publicKey) { // Ethereum address derivation usando Keccak256 // 1. Rimuovi il prefix byte (0x04) dalla chiave pubblica non compressa var publicKeyWithoutPrefix = publicKey.slice(1); // 2. Calcola Keccak256 hash var hash = keccak_256(publicKeyWithoutPrefix); // 3. Prendi gli ultimi 20 byte var address = hash.slice(-20); // 4. Aggiungi '0x' prefix e converti in hex return '0x' + bytesToHex(address); }