UNPKG

sharp

Version:

High performance Node.js image processing, the fastest module to resize JPEG, PNG, WebP, GIF, AVIF and TIFF images

1,128 lines (1,036 loc) 81.6 kB
// Copyright 2013 Lovell Fuller and others. // SPDX-License-Identifier: Apache-2.0 #include <algorithm> #include <cmath> #include <map> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <vips/vips8> #include <napi.h> #include "common.h" #include "operations.h" #include "pipeline.h" #ifdef _WIN32 #define STAT64_STRUCT __stat64 #define STAT64_FUNCTION _stat64 #elif defined(_LARGEFILE64_SOURCE) #define STAT64_STRUCT stat64 #define STAT64_FUNCTION stat64 #else #define STAT64_STRUCT stat #define STAT64_FUNCTION stat #endif class PipelineWorker : public Napi::AsyncWorker { public: PipelineWorker(Napi::Function callback, PipelineBaton *baton, Napi::Function debuglog, Napi::Function queueListener) : Napi::AsyncWorker(callback), baton(baton), debuglog(Napi::Persistent(debuglog)), queueListener(Napi::Persistent(queueListener)) {} ~PipelineWorker() {} // libuv worker void Execute() { // Decrement queued task counter sharp::counterQueue--; // Increment processing task counter sharp::counterProcess++; try { // Open input vips::VImage image; sharp::ImageType inputImageType; std::tie(image, inputImageType) = sharp::OpenInput(baton->input); VipsAccess access = baton->input->access; image = sharp::EnsureColourspace(image, baton->colourspacePipeline); int nPages = baton->input->pages; if (nPages == -1) { // Resolve the number of pages if we need to render until the end of the document nPages = image.get_typeof(VIPS_META_N_PAGES) != 0 ? image.get_int(VIPS_META_N_PAGES) - baton->input->page : 1; } // Get pre-resize page height int pageHeight = sharp::GetPageHeight(image); // Calculate angle of rotation VipsAngle rotation = VIPS_ANGLE_D0; VipsAngle autoRotation = VIPS_ANGLE_D0; bool autoFlip = false; bool autoFlop = false; if (baton->useExifOrientation) { // Rotate and flip image according to Exif orientation std::tie(autoRotation, autoFlip, autoFlop) = CalculateExifRotationAndFlip(sharp::ExifOrientation(image)); image = sharp::RemoveExifOrientation(image); } else { rotation = CalculateAngleRotation(baton->angle); } // Rotate pre-extract bool const shouldRotateBefore = baton->rotateBeforePreExtract && (rotation != VIPS_ANGLE_D0 || autoRotation != VIPS_ANGLE_D0 || autoFlip || baton->flip || autoFlop || baton->flop || baton->rotationAngle != 0.0); if (shouldRotateBefore) { image = sharp::StaySequential(image, rotation != VIPS_ANGLE_D0 || autoRotation != VIPS_ANGLE_D0 || autoFlip || baton->flip || baton->rotationAngle != 0.0); if (autoRotation != VIPS_ANGLE_D0) { if (autoRotation != VIPS_ANGLE_D180) { MultiPageUnsupported(nPages, "Rotate"); } image = image.rot(autoRotation); autoRotation = VIPS_ANGLE_D0; } if (autoFlip) { image = image.flip(VIPS_DIRECTION_VERTICAL); autoFlip = false; } else if (baton->flip) { image = image.flip(VIPS_DIRECTION_VERTICAL); baton->flip = false; } if (autoFlop) { image = image.flip(VIPS_DIRECTION_HORIZONTAL); autoFlop = false; } else if (baton->flop) { image = image.flip(VIPS_DIRECTION_HORIZONTAL); baton->flop = false; } if (rotation != VIPS_ANGLE_D0) { if (rotation != VIPS_ANGLE_D180) { MultiPageUnsupported(nPages, "Rotate"); } image = image.rot(rotation); rotation = VIPS_ANGLE_D0; } if (baton->rotationAngle != 0.0) { MultiPageUnsupported(nPages, "Rotate"); std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground, false); image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background)).copy_memory(); } } // Trim if (baton->trimThreshold >= 0.0) { MultiPageUnsupported(nPages, "Trim"); image = sharp::StaySequential(image); image = sharp::Trim(image, baton->trimBackground, baton->trimThreshold, baton->trimLineArt); baton->trimOffsetLeft = image.xoffset(); baton->trimOffsetTop = image.yoffset(); } // Pre extraction if (baton->topOffsetPre != -1) { image = nPages > 1 ? sharp::CropMultiPage(image, baton->leftOffsetPre, baton->topOffsetPre, baton->widthPre, baton->heightPre, nPages, &pageHeight) : image.extract_area(baton->leftOffsetPre, baton->topOffsetPre, baton->widthPre, baton->heightPre); } // Get pre-resize image width and height int inputWidth = image.width(); int inputHeight = image.height(); // Is there just one page? Shrink to inputHeight instead if (nPages == 1) { pageHeight = inputHeight; } // Scaling calculations double hshrink; double vshrink; int targetResizeWidth = baton->width; int targetResizeHeight = baton->height; // When auto-rotating by 90 or 270 degrees, swap the target width and // height to ensure the behavior aligns with how it would have been if // the rotation had taken place *before* resizing. if (!baton->rotateBeforePreExtract && (autoRotation == VIPS_ANGLE_D90 || autoRotation == VIPS_ANGLE_D270)) { std::swap(targetResizeWidth, targetResizeHeight); } // Shrink to pageHeight, so we work for multi-page images std::tie(hshrink, vshrink) = sharp::ResolveShrink( inputWidth, pageHeight, targetResizeWidth, targetResizeHeight, baton->canvas, baton->withoutEnlargement, baton->withoutReduction); // The jpeg preload shrink. int jpegShrinkOnLoad = 1; // WebP, PDF, SVG scale double scale = 1.0; // Try to reload input using shrink-on-load for JPEG, WebP, SVG and PDF, when: // - the width or height parameters are specified; // - gamma correction doesn't need to be applied; // - trimming or pre-resize extract isn't required; // - input colourspace is not specified; bool const shouldPreShrink = (targetResizeWidth > 0 || targetResizeHeight > 0) && baton->gamma == 0 && baton->topOffsetPre == -1 && baton->trimThreshold < 0.0 && baton->colourspacePipeline == VIPS_INTERPRETATION_LAST && !shouldRotateBefore; if (shouldPreShrink) { // The common part of the shrink: the bit by which both axes must be shrunk double shrink = std::min(hshrink, vshrink); if (inputImageType == sharp::ImageType::JPEG) { // Leave at least a factor of two for the final resize step, when fastShrinkOnLoad: false // for more consistent results and to avoid extra sharpness to the image int factor = baton->fastShrinkOnLoad ? 1 : 2; if (shrink >= 8 * factor) { jpegShrinkOnLoad = 8; } else if (shrink >= 4 * factor) { jpegShrinkOnLoad = 4; } else if (shrink >= 2 * factor) { jpegShrinkOnLoad = 2; } // Lower shrink-on-load for known libjpeg rounding errors if (jpegShrinkOnLoad > 1 && static_cast<int>(shrink) == jpegShrinkOnLoad) { jpegShrinkOnLoad /= 2; } } else if (inputImageType == sharp::ImageType::WEBP && baton->fastShrinkOnLoad && shrink > 1.0) { // Avoid upscaling via webp scale = 1.0 / shrink; } else if (inputImageType == sharp::ImageType::SVG || inputImageType == sharp::ImageType::PDF) { scale = 1.0 / shrink; } } // Reload input using shrink-on-load, it'll be an integer shrink // factor for jpegload*, a double scale factor for webpload*, // pdfload* and svgload* if (jpegShrinkOnLoad > 1) { vips::VOption *option = VImage::option() ->set("access", access) ->set("shrink", jpegShrinkOnLoad) ->set("unlimited", baton->input->unlimited) ->set("fail_on", baton->input->failOn); if (baton->input->buffer != nullptr) { // Reload JPEG buffer VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength); image = VImage::jpegload_buffer(blob, option); vips_area_unref(reinterpret_cast<VipsArea*>(blob)); } else { // Reload JPEG file image = VImage::jpegload(const_cast<char*>(baton->input->file.data()), option); } } else if (scale != 1.0) { vips::VOption *option = VImage::option() ->set("access", access) ->set("scale", scale) ->set("fail_on", baton->input->failOn); if (inputImageType == sharp::ImageType::WEBP) { option->set("n", baton->input->pages); option->set("page", baton->input->page); if (baton->input->buffer != nullptr) { // Reload WebP buffer VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength); image = VImage::webpload_buffer(blob, option); vips_area_unref(reinterpret_cast<VipsArea*>(blob)); } else { // Reload WebP file image = VImage::webpload(const_cast<char*>(baton->input->file.data()), option); } } else if (inputImageType == sharp::ImageType::SVG) { option->set("unlimited", baton->input->unlimited); option->set("dpi", baton->input->density); if (baton->input->buffer != nullptr) { // Reload SVG buffer VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength); image = VImage::svgload_buffer(blob, option); vips_area_unref(reinterpret_cast<VipsArea*>(blob)); } else { // Reload SVG file image = VImage::svgload(const_cast<char*>(baton->input->file.data()), option); } sharp::SetDensity(image, baton->input->density); if (image.width() > 32767 || image.height() > 32767) { throw vips::VError("Input SVG image will exceed 32767x32767 pixel limit when scaled"); } } else if (inputImageType == sharp::ImageType::PDF) { option->set("n", baton->input->pages); option->set("page", baton->input->page); option->set("dpi", baton->input->density); if (baton->input->buffer != nullptr) { // Reload PDF buffer VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength); image = VImage::pdfload_buffer(blob, option); vips_area_unref(reinterpret_cast<VipsArea*>(blob)); } else { // Reload PDF file image = VImage::pdfload(const_cast<char*>(baton->input->file.data()), option); } sharp::SetDensity(image, baton->input->density); } } else { if (inputImageType == sharp::ImageType::SVG && (image.width() > 32767 || image.height() > 32767)) { throw vips::VError("Input SVG image exceeds 32767x32767 pixel limit"); } } // Any pre-shrinking may already have been done inputWidth = image.width(); inputHeight = image.height(); // After pre-shrink, but before the main shrink stage // Reuse the initial pageHeight if we didn't pre-shrink if (shouldPreShrink) { pageHeight = sharp::GetPageHeight(image); } // Shrink to pageHeight, so we work for multi-page images std::tie(hshrink, vshrink) = sharp::ResolveShrink( inputWidth, pageHeight, targetResizeWidth, targetResizeHeight, baton->canvas, baton->withoutEnlargement, baton->withoutReduction); int targetHeight = static_cast<int>(std::rint(static_cast<double>(pageHeight) / vshrink)); int targetPageHeight = targetHeight; // In toilet-roll mode, we must adjust vshrink so that we exactly hit // pageHeight or we'll have pixels straddling pixel boundaries if (inputHeight > pageHeight) { targetHeight *= nPages; vshrink = static_cast<double>(inputHeight) / targetHeight; } // Ensure we're using a device-independent colour space std::pair<char*, size_t> inputProfile(nullptr, 0); if ((baton->keepMetadata & VIPS_FOREIGN_KEEP_ICC) && baton->withIccProfile.empty()) { // Cache input profile for use with output inputProfile = sharp::GetProfile(image); baton->input->ignoreIcc = true; } char const *processingProfile = image.interpretation() == VIPS_INTERPRETATION_RGB16 ? "p3" : "srgb"; if ( sharp::HasProfile(image) && image.interpretation() != VIPS_INTERPRETATION_LABS && image.interpretation() != VIPS_INTERPRETATION_GREY16 && baton->colourspacePipeline != VIPS_INTERPRETATION_CMYK && !baton->input->ignoreIcc ) { // Convert to sRGB/P3 using embedded profile try { image = image.icc_transform(processingProfile, VImage::option() ->set("embedded", true) ->set("depth", sharp::Is16Bit(image.interpretation()) ? 16 : 8) ->set("intent", VIPS_INTENT_PERCEPTUAL)); } catch(...) { sharp::VipsWarningCallback(nullptr, G_LOG_LEVEL_WARNING, "Invalid embedded profile", nullptr); } } else if ( image.interpretation() == VIPS_INTERPRETATION_CMYK && baton->colourspacePipeline != VIPS_INTERPRETATION_CMYK ) { image = image.icc_transform(processingProfile, VImage::option() ->set("input_profile", "cmyk") ->set("intent", VIPS_INTENT_PERCEPTUAL)); } // Flatten image to remove alpha channel if (baton->flatten && sharp::HasAlpha(image)) { image = sharp::Flatten(image, baton->flattenBackground); } // Gamma encoding (darken) if (baton->gamma >= 1 && baton->gamma <= 3) { image = sharp::Gamma(image, 1.0 / baton->gamma); } // Convert to greyscale (linear, therefore after gamma encoding, if any) if (baton->greyscale) { image = image.colourspace(VIPS_INTERPRETATION_B_W); } bool const shouldResize = hshrink != 1.0 || vshrink != 1.0; bool const shouldBlur = baton->blurSigma != 0.0; bool const shouldConv = baton->convKernelWidth * baton->convKernelHeight > 0; bool const shouldSharpen = baton->sharpenSigma != 0.0; bool const shouldComposite = !baton->composite.empty(); if (shouldComposite && !sharp::HasAlpha(image)) { image = sharp::EnsureAlpha(image, 1); } VipsBandFormat premultiplyFormat = image.format(); bool const shouldPremultiplyAlpha = sharp::HasAlpha(image) && (shouldResize || shouldBlur || shouldConv || shouldSharpen); if (shouldPremultiplyAlpha) { image = image.premultiply().cast(premultiplyFormat); } // Resize if (shouldResize) { image = image.resize(1.0 / hshrink, VImage::option() ->set("vscale", 1.0 / vshrink) ->set("kernel", baton->kernel)); } image = sharp::StaySequential(image, autoRotation != VIPS_ANGLE_D0 || baton->flip || autoFlip || rotation != VIPS_ANGLE_D0); // Auto-rotate post-extract if (autoRotation != VIPS_ANGLE_D0) { if (autoRotation != VIPS_ANGLE_D180) { MultiPageUnsupported(nPages, "Rotate"); } image = image.rot(autoRotation); } // Mirror vertically (up-down) about the x-axis if (baton->flip || autoFlip) { image = image.flip(VIPS_DIRECTION_VERTICAL); } // Mirror horizontally (left-right) about the y-axis if (baton->flop || autoFlop) { image = image.flip(VIPS_DIRECTION_HORIZONTAL); } // Rotate post-extract 90-angle if (rotation != VIPS_ANGLE_D0) { if (rotation != VIPS_ANGLE_D180) { MultiPageUnsupported(nPages, "Rotate"); } image = image.rot(rotation); } // Join additional color channels to the image if (!baton->joinChannelIn.empty()) { VImage joinImage; sharp::ImageType joinImageType = sharp::ImageType::UNKNOWN; for (unsigned int i = 0; i < baton->joinChannelIn.size(); i++) { baton->joinChannelIn[i]->access = access; std::tie(joinImage, joinImageType) = sharp::OpenInput(baton->joinChannelIn[i]); joinImage = sharp::EnsureColourspace(joinImage, baton->colourspacePipeline); image = image.bandjoin(joinImage); } image = image.copy(VImage::option()->set("interpretation", baton->colourspace)); image = sharp::RemoveGifPalette(image); } inputWidth = image.width(); inputHeight = nPages > 1 ? targetPageHeight : image.height(); // Resolve dimensions if (baton->width <= 0) { baton->width = inputWidth; } if (baton->height <= 0) { baton->height = inputHeight; } // Crop/embed if (inputWidth != baton->width || inputHeight != baton->height) { if (baton->canvas == sharp::Canvas::EMBED) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->resizeBackground, shouldPremultiplyAlpha); // Embed int left; int top; std::tie(left, top) = sharp::CalculateEmbedPosition( inputWidth, inputHeight, baton->width, baton->height, baton->position); int width = std::max(inputWidth, baton->width); int height = std::max(inputHeight, baton->height); image = nPages > 1 ? sharp::EmbedMultiPage(image, left, top, width, height, VIPS_EXTEND_BACKGROUND, background, nPages, &targetPageHeight) : image.embed(left, top, width, height, VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background)); } else if (baton->canvas == sharp::Canvas::CROP) { if (baton->width > inputWidth) { baton->width = inputWidth; } if (baton->height > inputHeight) { baton->height = inputHeight; } // Crop if (baton->position < 9) { // Gravity-based crop int left; int top; std::tie(left, top) = sharp::CalculateCrop( inputWidth, inputHeight, baton->width, baton->height, baton->position); int width = std::min(inputWidth, baton->width); int height = std::min(inputHeight, baton->height); image = nPages > 1 ? sharp::CropMultiPage(image, left, top, width, height, nPages, &targetPageHeight) : image.extract_area(left, top, width, height); } else { int attention_x; int attention_y; // Attention-based or Entropy-based crop MultiPageUnsupported(nPages, "Resize strategy"); image = sharp::StaySequential(image); image = image.smartcrop(baton->width, baton->height, VImage::option() ->set("interesting", baton->position == 16 ? VIPS_INTERESTING_ENTROPY : VIPS_INTERESTING_ATTENTION) ->set("premultiplied", shouldPremultiplyAlpha) ->set("attention_x", &attention_x) ->set("attention_y", &attention_y)); baton->hasCropOffset = true; baton->cropOffsetLeft = static_cast<int>(image.xoffset()); baton->cropOffsetTop = static_cast<int>(image.yoffset()); baton->hasAttentionCenter = true; baton->attentionX = static_cast<int>(attention_x * jpegShrinkOnLoad / scale); baton->attentionY = static_cast<int>(attention_y * jpegShrinkOnLoad / scale); } } } // Rotate post-extract non-90 angle if (!baton->rotateBeforePreExtract && baton->rotationAngle != 0.0) { MultiPageUnsupported(nPages, "Rotate"); image = sharp::StaySequential(image); std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground, shouldPremultiplyAlpha); image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background)); } // Post extraction if (baton->topOffsetPost != -1) { if (nPages > 1) { image = sharp::CropMultiPage(image, baton->leftOffsetPost, baton->topOffsetPost, baton->widthPost, baton->heightPost, nPages, &targetPageHeight); // heightPost is used in the info object, so update to reflect the number of pages baton->heightPost *= nPages; } else { image = image.extract_area( baton->leftOffsetPost, baton->topOffsetPost, baton->widthPost, baton->heightPost); } } // Affine transform if (!baton->affineMatrix.empty()) { MultiPageUnsupported(nPages, "Affine"); image = sharp::StaySequential(image); std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->affineBackground, shouldPremultiplyAlpha); vips::VInterpolate interp = vips::VInterpolate::new_from_name( const_cast<char*>(baton->affineInterpolator.data())); image = image.affine(baton->affineMatrix, VImage::option()->set("background", background) ->set("idx", baton->affineIdx) ->set("idy", baton->affineIdy) ->set("odx", baton->affineOdx) ->set("ody", baton->affineOdy) ->set("interpolate", interp)); } // Extend edges if (baton->extendTop > 0 || baton->extendBottom > 0 || baton->extendLeft > 0 || baton->extendRight > 0) { // Embed baton->width = image.width() + baton->extendLeft + baton->extendRight; baton->height = (nPages > 1 ? targetPageHeight : image.height()) + baton->extendTop + baton->extendBottom; if (baton->extendWith == VIPS_EXTEND_BACKGROUND) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->extendBackground, shouldPremultiplyAlpha); image = sharp::StaySequential(image, nPages > 1); image = nPages > 1 ? sharp::EmbedMultiPage(image, baton->extendLeft, baton->extendTop, baton->width, baton->height, baton->extendWith, background, nPages, &targetPageHeight) : image.embed(baton->extendLeft, baton->extendTop, baton->width, baton->height, VImage::option()->set("extend", baton->extendWith)->set("background", background)); } else { std::vector<double> ignoredBackground(1); image = sharp::StaySequential(image); image = nPages > 1 ? sharp::EmbedMultiPage(image, baton->extendLeft, baton->extendTop, baton->width, baton->height, baton->extendWith, ignoredBackground, nPages, &targetPageHeight) : image.embed(baton->extendLeft, baton->extendTop, baton->width, baton->height, VImage::option()->set("extend", baton->extendWith)); } } // Median - must happen before blurring, due to the utility of blurring after thresholding if (baton->medianSize > 0) { image = image.median(baton->medianSize); } // Threshold - must happen before blurring, due to the utility of blurring after thresholding // Threshold - must happen before unflatten to enable non-white unflattening if (baton->threshold != 0) { image = sharp::Threshold(image, baton->threshold, baton->thresholdGrayscale); } // Blur if (shouldBlur) { image = sharp::Blur(image, baton->blurSigma, baton->precision, baton->minAmpl); } // Unflatten the image if (baton->unflatten) { image = sharp::Unflatten(image); } // Convolve if (shouldConv) { image = sharp::Convolve(image, baton->convKernelWidth, baton->convKernelHeight, baton->convKernelScale, baton->convKernelOffset, baton->convKernel); } // Recomb if (!baton->recombMatrix.empty()) { image = sharp::Recomb(image, baton->recombMatrix); } // Modulate if (baton->brightness != 1.0 || baton->saturation != 1.0 || baton->hue != 0.0 || baton->lightness != 0.0) { image = sharp::Modulate(image, baton->brightness, baton->saturation, baton->hue, baton->lightness); } // Sharpen if (shouldSharpen) { image = sharp::Sharpen(image, baton->sharpenSigma, baton->sharpenM1, baton->sharpenM2, baton->sharpenX1, baton->sharpenY2, baton->sharpenY3); } // Reverse premultiplication after all transformations if (shouldPremultiplyAlpha) { image = image.unpremultiply().cast(premultiplyFormat); } baton->premultiplied = shouldPremultiplyAlpha; // Composite if (shouldComposite) { std::vector<VImage> images = { image }; std::vector<int> modes, xs, ys; for (Composite *composite : baton->composite) { VImage compositeImage; sharp::ImageType compositeImageType = sharp::ImageType::UNKNOWN; composite->input->access = access; std::tie(compositeImage, compositeImageType) = sharp::OpenInput(composite->input); compositeImage = sharp::EnsureColourspace(compositeImage, baton->colourspacePipeline); // Verify within current dimensions if (compositeImage.width() > image.width() || compositeImage.height() > image.height()) { throw vips::VError("Image to composite must have same dimensions or smaller"); } // Check if overlay is tiled if (composite->tile) { int across = 0; int down = 0; // Use gravity in overlay if (compositeImage.width() <= image.width()) { across = static_cast<int>(ceil(static_cast<double>(image.width()) / compositeImage.width())); // Ensure odd number of tiles across when gravity is centre, north or south if (composite->gravity == 0 || composite->gravity == 1 || composite->gravity == 3) { across |= 1; } } if (compositeImage.height() <= image.height()) { down = static_cast<int>(ceil(static_cast<double>(image.height()) / compositeImage.height())); // Ensure odd number of tiles down when gravity is centre, east or west if (composite->gravity == 0 || composite->gravity == 2 || composite->gravity == 4) { down |= 1; } } if (across != 0 || down != 0) { int left; int top; compositeImage = sharp::StaySequential(compositeImage).replicate(across, down); if (composite->hasOffset) { std::tie(left, top) = sharp::CalculateCrop( compositeImage.width(), compositeImage.height(), image.width(), image.height(), composite->left, composite->top); } else { std::tie(left, top) = sharp::CalculateCrop( compositeImage.width(), compositeImage.height(), image.width(), image.height(), composite->gravity); } compositeImage = compositeImage.extract_area(left, top, image.width(), image.height()); } // gravity was used for extract_area, set it back to its default value of 0 composite->gravity = 0; } // Ensure image to composite is sRGB with unpremultiplied alpha compositeImage = compositeImage.colourspace(VIPS_INTERPRETATION_sRGB); if (!sharp::HasAlpha(compositeImage)) { compositeImage = sharp::EnsureAlpha(compositeImage, 1); } if (composite->premultiplied) compositeImage = compositeImage.unpremultiply(); // Calculate position int left; int top; if (composite->hasOffset) { // Composite image at given offsets if (composite->tile) { std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(), compositeImage.width(), compositeImage.height(), composite->left, composite->top); } else { left = composite->left; top = composite->top; } } else { // Composite image with given gravity std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(), compositeImage.width(), compositeImage.height(), composite->gravity); } images.push_back(compositeImage); modes.push_back(composite->mode); xs.push_back(left); ys.push_back(top); } image = VImage::composite(images, modes, VImage::option()->set("x", xs)->set("y", ys)); image = sharp::RemoveGifPalette(image); } // Gamma decoding (brighten) if (baton->gammaOut >= 1 && baton->gammaOut <= 3) { image = sharp::Gamma(image, baton->gammaOut); } // Linear adjustment (a * in + b) if (!baton->linearA.empty()) { image = sharp::Linear(image, baton->linearA, baton->linearB); } // Apply normalisation - stretch luminance to cover full dynamic range if (baton->normalise) { image = sharp::StaySequential(image); image = sharp::Normalise(image, baton->normaliseLower, baton->normaliseUpper); } // Apply contrast limiting adaptive histogram equalization (CLAHE) if (baton->claheWidth != 0 && baton->claheHeight != 0) { image = sharp::StaySequential(image); image = sharp::Clahe(image, baton->claheWidth, baton->claheHeight, baton->claheMaxSlope); } // Apply bitwise boolean operation between images if (baton->boolean != nullptr) { VImage booleanImage; sharp::ImageType booleanImageType = sharp::ImageType::UNKNOWN; baton->boolean->access = access; std::tie(booleanImage, booleanImageType) = sharp::OpenInput(baton->boolean); booleanImage = sharp::EnsureColourspace(booleanImage, baton->colourspacePipeline); image = sharp::Boolean(image, booleanImage, baton->booleanOp); image = sharp::RemoveGifPalette(image); } // Apply per-channel Bandbool bitwise operations after all other operations if (baton->bandBoolOp >= VIPS_OPERATION_BOOLEAN_AND && baton->bandBoolOp < VIPS_OPERATION_BOOLEAN_LAST) { image = sharp::Bandbool(image, baton->bandBoolOp); } // Tint the image if (baton->tint[0] >= 0.0) { image = sharp::Tint(image, baton->tint); } // Remove alpha channel, if any if (baton->removeAlpha) { image = sharp::RemoveAlpha(image); } // Ensure alpha channel, if missing if (baton->ensureAlpha != -1) { image = sharp::EnsureAlpha(image, baton->ensureAlpha); } // Convert image to sRGB, if not already if (sharp::Is16Bit(image.interpretation())) { image = image.cast(VIPS_FORMAT_USHORT); } if (image.interpretation() != baton->colourspace) { // Convert colourspace, pass the current known interpretation so libvips doesn't have to guess image = image.colourspace(baton->colourspace, VImage::option()->set("source_space", image.interpretation())); // Transform colours from embedded profile to output profile if ((baton->keepMetadata & VIPS_FOREIGN_KEEP_ICC) && baton->colourspacePipeline != VIPS_INTERPRETATION_CMYK && baton->withIccProfile.empty() && sharp::HasProfile(image)) { image = image.icc_transform(processingProfile, VImage::option() ->set("embedded", true) ->set("depth", sharp::Is16Bit(image.interpretation()) ? 16 : 8) ->set("intent", VIPS_INTENT_PERCEPTUAL)); } } // Extract channel if (baton->extractChannel > -1) { if (baton->extractChannel >= image.bands()) { if (baton->extractChannel == 3 && sharp::HasAlpha(image)) { baton->extractChannel = image.bands() - 1; } else { (baton->err) .append("Cannot extract channel ").append(std::to_string(baton->extractChannel)) .append(" from image with channels 0-").append(std::to_string(image.bands() - 1)); return Error(); } } VipsInterpretation colourspace = sharp::Is16Bit(image.interpretation()) ? VIPS_INTERPRETATION_GREY16 : VIPS_INTERPRETATION_B_W; image = image .extract_band(baton->extractChannel) .copy(VImage::option()->set("interpretation", colourspace)); } // Apply output ICC profile if (!baton->withIccProfile.empty()) { try { image = image.icc_transform(const_cast<char*>(baton->withIccProfile.data()), VImage::option() ->set("input_profile", processingProfile) ->set("embedded", true) ->set("depth", sharp::Is16Bit(image.interpretation()) ? 16 : 8) ->set("intent", VIPS_INTENT_PERCEPTUAL)); } catch(...) { sharp::VipsWarningCallback(nullptr, G_LOG_LEVEL_WARNING, "Invalid profile", nullptr); } } else if (baton->keepMetadata & VIPS_FOREIGN_KEEP_ICC) { image = sharp::SetProfile(image, inputProfile); } // Negate the colours in the image if (baton->negate) { image = sharp::Negate(image, baton->negateAlpha); } // Override EXIF Orientation tag if (baton->withMetadataOrientation != -1) { image = sharp::SetExifOrientation(image, baton->withMetadataOrientation); } // Override pixel density if (baton->withMetadataDensity > 0) { image = sharp::SetDensity(image, baton->withMetadataDensity); } // EXIF key/value pairs if (baton->keepMetadata & VIPS_FOREIGN_KEEP_EXIF) { image = image.copy(); if (!baton->withExifMerge) { image = sharp::RemoveExif(image); } for (const auto& s : baton->withExif) { image.set(s.first.data(), s.second.data()); } } // Number of channels used in output image baton->channels = image.bands(); baton->width = image.width(); baton->height = image.height(); image = sharp::SetAnimationProperties( image, nPages, targetPageHeight, baton->delay, baton->loop); if (image.get_typeof(VIPS_META_PAGE_HEIGHT) == G_TYPE_INT) { baton->pageHeightOut = image.get_int(VIPS_META_PAGE_HEIGHT); baton->pagesOut = image.get_int(VIPS_META_N_PAGES); } // Output sharp::SetTimeout(image, baton->timeoutSeconds); if (baton->fileOut.empty()) { // Buffer output if (baton->formatOut == "jpeg" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::JPEG)) { // Write JPEG to buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG); VipsArea *area = reinterpret_cast<VipsArea*>(image.jpegsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("Q", baton->jpegQuality) ->set("interlace", baton->jpegProgressive) ->set("subsample_mode", baton->jpegChromaSubsampling == "4:4:4" ? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON) ->set("trellis_quant", baton->jpegTrellisQuantisation) ->set("quant_table", baton->jpegQuantisationTable) ->set("overshoot_deringing", baton->jpegOvershootDeringing) ->set("optimize_scans", baton->jpegOptimiseScans) ->set("optimize_coding", baton->jpegOptimiseCoding))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "jpeg"; if (baton->colourspace == VIPS_INTERPRETATION_CMYK) { baton->channels = std::min(baton->channels, 4); } else { baton->channels = std::min(baton->channels, 3); } } else if (baton->formatOut == "jp2" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::JP2)) { // Write JP2 to Buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::JP2); VipsArea *area = reinterpret_cast<VipsArea*>(image.jp2ksave_buffer(VImage::option() ->set("Q", baton->jp2Quality) ->set("lossless", baton->jp2Lossless) ->set("subsample_mode", baton->jp2ChromaSubsampling == "4:4:4" ? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON) ->set("tile_height", baton->jp2TileHeight) ->set("tile_width", baton->jp2TileWidth))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "jp2"; } else if (baton->formatOut == "png" || (baton->formatOut == "input" && (inputImageType == sharp::ImageType::PNG || inputImageType == sharp::ImageType::SVG))) { // Write PNG to buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::PNG); VipsArea *area = reinterpret_cast<VipsArea*>(image.pngsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("interlace", baton->pngProgressive) ->set("compression", baton->pngCompressionLevel) ->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE) ->set("palette", baton->pngPalette) ->set("Q", baton->pngQuality) ->set("effort", baton->pngEffort) ->set("bitdepth", sharp::Is16Bit(image.interpretation()) ? 16 : baton->pngBitdepth) ->set("dither", baton->pngDither))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "png"; } else if (baton->formatOut == "webp" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::WEBP)) { // Write WEBP to buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::WEBP); VipsArea *area = reinterpret_cast<VipsArea*>(image.webpsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("Q", baton->webpQuality) ->set("lossless", baton->webpLossless) ->set("near_lossless", baton->webpNearLossless) ->set("smart_subsample", baton->webpSmartSubsample) ->set("preset", baton->webpPreset) ->set("effort", baton->webpEffort) ->set("min_size", baton->webpMinSize) ->set("mixed", baton->webpMixed) ->set("alpha_q", baton->webpAlphaQuality))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "webp"; } else if (baton->formatOut == "gif" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::GIF)) { // Write GIF to buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::GIF); VipsArea *area = reinterpret_cast<VipsArea*>(image.gifsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("bitdepth", baton->gifBitdepth) ->set("effort", baton->gifEffort) ->set("reuse", baton->gifReuse) ->set("interlace", baton->gifProgressive) ->set("interframe_maxerror", baton->gifInterFrameMaxError) ->set("interpalette_maxerror", baton->gifInterPaletteMaxError) ->set("dither", baton->gifDither))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "gif"; } else if (baton->formatOut == "tiff" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::TIFF)) { // Write TIFF to buffer if (baton->tiffCompression == VIPS_FOREIGN_TIFF_COMPRESSION_JPEG) { sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG); baton->channels = std::min(baton->channels, 3); } // Cast pixel values to float, if required if (baton->tiffPredictor == VIPS_FOREIGN_TIFF_PREDICTOR_FLOAT) { image = image.cast(VIPS_FORMAT_FLOAT); } VipsArea *area = reinterpret_cast<VipsArea*>(image.tiffsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("Q", baton->tiffQuality) ->set("bitdepth", baton->tiffBitdepth) ->set("compression", baton->tiffCompression) ->set("miniswhite", baton->tiffMiniswhite) ->set("predictor", baton->tiffPredictor) ->set("pyramid", baton->tiffPyramid) ->set("tile", baton->tiffTile) ->set("tile_height", baton->tiffTileHeight) ->set("tile_width", baton->tiffTileWidth) ->set("xres", baton->tiffXres) ->set("yres", baton->tiffYres) ->set("resunit", baton->tiffResolutionUnit))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "tiff"; } else if (baton->formatOut == "heif" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::HEIF)) { // Write HEIF to buffer sharp::AssertImageTypeDimensions(image, sharp::ImageType::HEIF); image = sharp::RemoveAnimationProperties(image).cast(VIPS_FORMAT_UCHAR); VipsArea *area = reinterpret_cast<VipsArea*>(image.heifsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("Q", baton->heifQuality) ->set("compression", baton->heifCompression) ->set("effort", baton->heifEffort) ->set("bitdepth", baton->heifBitdepth) ->set("subsample_mode", baton->heifChromaSubsampling == "4:4:4" ? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON) ->set("lossless", baton->heifLossless))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "heif"; } else if (baton->formatOut == "dz") { // Write DZ to buffer baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_ZIP; if (!sharp::HasAlpha(image)) { baton->tileBackground.pop_back(); } image = sharp::StaySequential(image, baton->tileAngle != 0); vips::VOption *options = BuildOptionsDZ(baton); VipsArea *area = reinterpret_cast<VipsArea*>(image.dzsave_buffer(options)); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "dz"; } else if (baton->formatOut == "jxl" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::JXL)) { // Write JXL to buffer image = sharp::RemoveAnimationProperties(image); VipsArea *area = reinterpret_cast<VipsArea*>(image.jxlsave_buffer(VImage::option() ->set("keep", baton->keepMetadata) ->set("distance", baton->jxlDistance) ->set("tier", baton->jxlDecodingTier) ->set("effort", baton->jxlEffort) ->set("lossless", baton->jxlLossless))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "jxl"; } else if (baton->formatOut == "raw" || (baton->formatOut == "input" && inputImageType == sharp::ImageType::RAW)) { // Write raw, uncompressed image data to buffer if (baton->greyscale || image.interpretation() == VIPS_INTERPRETATION_B_W) { // Extract first band for greyscale image image = image[0]; baton->channels = 1; } if (image.format() != baton->rawDepth) { // Cast pixels to requested format image = image.cast(baton->rawDepth); } // Get raw image data baton->bufferOut = static_cast<char*>(image.write_to_memory(&baton->bufferOutLength)); if (baton->bufferOut == nullptr) { (baton->err).append("Could not allocate enough memory for raw output"); return Error(); } baton->formatOut = "raw"; } else { // Unsupported output format (baton->err).append("Unsupported output format "); if (baton->formatOut == "input") { (baton->err).append(ImageTypeId(inputImageType)); } else { (baton->err).append(baton->formatOut); } return Error(); } } else { // File output bool const isJpeg = sharp::IsJpeg(baton->fileOut); bool const isPng = sharp::IsPng(baton->fileOut); bool const isWebp = sharp::IsWebp(baton->fileOut); bool const isGif = sharp::IsGif(baton->fileOut); bool const isTiff = sharp::IsTiff(baton->fileOut); bool const isJp2 = sharp::IsJp2(baton->fileOut); bool const isHeif = sharp::IsHeif(baton->fileOut); bool const isJxl = sharp::IsJxl(baton->fileOut); bool const isDz = sharp::IsDz(baton->fileOut); bool const isDzZip = sharp::IsDzZip(baton->fileOut); bool const isV = sharp::IsV(baton->fileOut); bool const mightMatchInput = baton->formatOut == "input"; bool const willMatchInput = mightMatchInput && !(isJpeg || isPng || isWebp || isGif || isTiff || isJp2 || isHeif || isDz || isDzZip || isV); if (baton->formatOut == "jpeg" || (mightMatchInput && isJpeg) || (willMatchInput && inputImageType == sharp::ImageType::JPEG)) { // Write JPEG to file sharp::AssertImageTypeDimensions(image, sharp::ImageType::JPEG); image.jpegsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("keep", baton->keepMetadata) ->set("Q", baton->jpegQuality) ->set("interlace", baton->jpegProgressive) ->set("subsample_mode", baton->jpegChromaSubsampling == "4:4:4" ? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON) ->set("trellis_quant", baton->jpegTrellisQuantisation) ->set("quant_table", baton->jpegQuantisationTable) ->set("overshoot_deringing", baton->jpegOvershootDeringing) ->set("optimize_scans", baton->jpegOptimiseScans) ->set("optimize_coding", baton->jpegOptimiseCoding)); baton->formatOut = "jpeg"; baton->channels = std::min(baton->channels, 3); } else if (baton->formatOut == "jp2" || (mightMatchInput && isJp2) || (willMatchInput && (inputImageType == sharp::ImageType::JP2))) { // Write JP2 to file sharp::AssertImageTypeDimensions(image, sharp::ImageType::JP2); image.jp2ksave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("Q", baton->jp2Quality) ->set("lossless", baton->jp2Lossless) ->set("subsample_mode", baton->jp2ChromaSubsampling == "4:4:4" ? VIPS_FOREIGN_SUBSAMPLE_OFF : VIPS_FOREIGN_SUBSAMPLE_ON) ->set("tile_height", baton->jp2TileHeight) ->set("tile_width", baton->jp2TileWidth)); baton->formatOut = "jp2"; } else if (baton->formatOut == "png" || (mightMatchInput && isPng) || (willMatchInput && (inputImageType == sharp::ImageType::PNG || inputImageType == sharp::ImageType::SVG))) { // Write PNG to file sharp::AssertImageTypeDimensions(image, sharp::ImageType::PNG); image.pngsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("keep", baton->keepMetadata) ->set("interlace", baton->pngProgressive) ->set("compression", baton->pngCompressionLevel) ->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE) ->set("palette", baton->pngPalette) ->set("Q", baton->pngQuality) ->set("bitdepth", sharp::Is16Bit(image.interpretation()) ? 16 : baton->pngBitdepth) ->set("effort", baton->pngEffort) ->set("dither", baton->pngDither)); baton->for