UNPKG

sharp

Version:

High performance Node.js image processing, the fastest module to resize JPEG, PNG, WebP and TIFF images

1,151 lines (1,069 loc) 64 kB
// Copyright 2013, 2014, 2015, 2016, 2017, 2018, 2019 Lovell Fuller and contributors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include <cmath> #include <map> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <vips/vips8> #include <node.h> #include <nan.h> #include "common.h" #include "operations.h" #include "pipeline.h" #if defined(WIN32) #define STAT64_STRUCT __stat64 #define STAT64_FUNCTION _stat64 #elif defined(__APPLE__) #define STAT64_STRUCT stat #define STAT64_FUNCTION stat #elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) #define STAT64_STRUCT stat #define STAT64_FUNCTION stat #else #define STAT64_STRUCT stat64 #define STAT64_FUNCTION stat64 #endif class PipelineWorker : public Nan::AsyncWorker { public: PipelineWorker( Nan::Callback *callback, PipelineBaton *baton, Nan::Callback *debuglog, Nan::Callback *queueListener, std::vector<v8::Local<v8::Object>> const buffersToPersist) : Nan::AsyncWorker(callback, "sharp:PipelineWorker"), baton(baton), debuglog(debuglog), queueListener(queueListener), buffersToPersist(buffersToPersist) { // Protect Buffer objects from GC, keyed on index std::accumulate(buffersToPersist.begin(), buffersToPersist.end(), 0, [this](uint32_t index, v8::Local<v8::Object> const buffer) -> uint32_t { SaveToPersistent(index, buffer); return index + 1; }); } ~PipelineWorker() {} // libuv worker void Execute() { using sharp::HasAlpha; using sharp::ImageType; // Decrement queued task counter g_atomic_int_dec_and_test(&sharp::counterQueue); // Increment processing task counter g_atomic_int_inc(&sharp::counterProcess); try { // Open input vips::VImage image; ImageType inputImageType; std::tie(image, inputImageType) = sharp::OpenInput(baton->input, baton->accessMethod); // Limit input images to a given number of pixels, where pixels = width * height // Ignore if 0 if (baton->limitInputPixels > 0 && static_cast<uint64_t>(image.width() * image.height()) > static_cast<uint64_t>(baton->limitInputPixels)) { (baton->err).append("Input image exceeds pixel limit"); return Error(); } // Calculate angle of rotation VipsAngle rotation; if (baton->useExifOrientation) { // Rotate and flip image according to Exif orientation bool flip; bool flop; std::tie(rotation, flip, flop) = CalculateExifRotationAndFlip(sharp::ExifOrientation(image)); baton->flip = baton->flip || flip; baton->flop = baton->flop || flop; } else { rotation = CalculateAngleRotation(baton->angle); } // Rotate pre-extract if (baton->rotateBeforePreExtract) { if (rotation != VIPS_ANGLE_D0) { image = image.rot(rotation); image = sharp::RemoveExifOrientation(image); } if (baton->rotationAngle != 0.0) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground); image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background)); } } // Trim if (baton->trimThreshold > 0.0) { image = sharp::Trim(image, baton->trimThreshold); baton->trimOffsetLeft = image.xoffset(); baton->trimOffsetTop = image.yoffset(); } // Pre extraction if (baton->topOffsetPre != -1) { image = image.extract_area(baton->leftOffsetPre, baton->topOffsetPre, baton->widthPre, baton->heightPre); } // Get pre-resize image width and height int inputWidth = image.width(); int inputHeight = image.height(); if (!baton->rotateBeforePreExtract && (rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) { // Swap input output width and height when rotating by 90 or 270 degrees std::swap(inputWidth, inputHeight); } // Scaling calculations double xfactor = 1.0; double yfactor = 1.0; int targetResizeWidth = baton->width; int targetResizeHeight = baton->height; if (baton->width > 0 && baton->height > 0) { // Fixed width and height xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width); yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height); switch (baton->canvas) { case Canvas::CROP: if (xfactor < yfactor) { targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor)); yfactor = xfactor; } else { targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor)); xfactor = yfactor; } break; case Canvas::EMBED: if (xfactor > yfactor) { targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor)); yfactor = xfactor; } else { targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor)); xfactor = yfactor; } break; case Canvas::MAX: if (xfactor > yfactor) { targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor)); yfactor = xfactor; } else { targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor)); xfactor = yfactor; } break; case Canvas::MIN: if (xfactor < yfactor) { targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor)); yfactor = xfactor; } else { targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor)); xfactor = yfactor; } break; case Canvas::IGNORE_ASPECT: if (!baton->rotateBeforePreExtract && (rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) { std::swap(xfactor, yfactor); } break; } } else if (baton->width > 0) { // Fixed width xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width); if (baton->canvas == Canvas::IGNORE_ASPECT) { targetResizeHeight = baton->height = inputHeight; } else { // Auto height yfactor = xfactor; targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / yfactor)); } } else if (baton->height > 0) { // Fixed height yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height); if (baton->canvas == Canvas::IGNORE_ASPECT) { targetResizeWidth = baton->width = inputWidth; } else { // Auto width xfactor = yfactor; targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / xfactor)); } } else { // Identity transform baton->width = inputWidth; baton->height = inputHeight; } // Calculate integral box shrink int xshrink = std::max(1, static_cast<int>(floor(xfactor))); int yshrink = std::max(1, static_cast<int>(floor(yfactor))); // Calculate residual float affine transformation double xresidual = static_cast<double>(xshrink) / xfactor; double yresidual = static_cast<double>(yshrink) / yfactor; // Do not enlarge the output if the input width *or* height // are already less than the required dimensions if (baton->withoutEnlargement) { if (inputWidth < baton->width || inputHeight < baton->height) { xfactor = 1.0; yfactor = 1.0; xshrink = 1; yshrink = 1; xresidual = 1.0; yresidual = 1.0; baton->width = inputWidth; baton->height = inputHeight; } } // If integral x and y shrink are equal, try to use shrink-on-load for JPEG and WebP, // but not when applying gamma correction, pre-resize extract or trim int shrink_on_load = 1; int shrink_on_load_factor = 1; // Leave at least a factor of two for the final resize step, when fastShrinkOnLoad: false // for more consistent results and avoid occasional small image shifting if (!baton->fastShrinkOnLoad) { shrink_on_load_factor = 2; } if ( xshrink == yshrink && xshrink >= 2 * shrink_on_load_factor && (inputImageType == ImageType::JPEG || inputImageType == ImageType::WEBP) && baton->gamma == 0 && baton->topOffsetPre == -1 && baton->trimThreshold == 0.0 ) { if (xshrink >= 8 * shrink_on_load_factor) { xfactor = xfactor / 8; yfactor = yfactor / 8; shrink_on_load = 8; } else if (xshrink >= 4 * shrink_on_load_factor) { xfactor = xfactor / 4; yfactor = yfactor / 4; shrink_on_load = 4; } else if (xshrink >= 2 * shrink_on_load_factor) { xfactor = xfactor / 2; yfactor = yfactor / 2; shrink_on_load = 2; } } // Help ensure a final kernel-based reduction to prevent shrink aliasing if (shrink_on_load > 1 && (xresidual == 1.0 || yresidual == 1.0)) { shrink_on_load = shrink_on_load / 2; xfactor = xfactor * 2; yfactor = yfactor * 2; } if (shrink_on_load > 1) { // Reload input using shrink-on-load vips::VOption *option = VImage::option() ->set("access", baton->accessMethod) ->set("shrink", shrink_on_load) ->set("fail", baton->input->failOnError); if (baton->input->buffer != nullptr) { VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength); if (inputImageType == ImageType::JPEG) { // Reload JPEG buffer image = VImage::jpegload_buffer(blob, option); } else { // Reload WebP buffer image = VImage::webpload_buffer(blob, option); } vips_area_unref(reinterpret_cast<VipsArea*>(blob)); } else { if (inputImageType == ImageType::JPEG) { // Reload JPEG file image = VImage::jpegload(const_cast<char*>(baton->input->file.data()), option); } else { // Reload WebP file image = VImage::webpload(const_cast<char*>(baton->input->file.data()), option); } } // Recalculate integral shrink and double residual int const shrunkOnLoadWidth = image.width(); int const shrunkOnLoadHeight = image.height(); if (!baton->rotateBeforePreExtract && (rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) { // Swap when rotating by 90 or 270 degrees xfactor = static_cast<double>(shrunkOnLoadWidth) / static_cast<double>(targetResizeHeight); yfactor = static_cast<double>(shrunkOnLoadHeight) / static_cast<double>(targetResizeWidth); } else { xfactor = static_cast<double>(shrunkOnLoadWidth) / static_cast<double>(targetResizeWidth); yfactor = static_cast<double>(shrunkOnLoadHeight) / static_cast<double>(targetResizeHeight); } } // Ensure we're using a device-independent colour space if (sharp::HasProfile(image) && image.interpretation() != VIPS_INTERPRETATION_LABS) { // Convert to sRGB using embedded profile try { image = image.icc_transform("srgb", VImage::option() ->set("embedded", TRUE) ->set("intent", VIPS_INTENT_PERCEPTUAL)); } catch(...) { // Ignore failure of embedded profile } } else if (image.interpretation() == VIPS_INTERPRETATION_CMYK) { image = image.icc_transform("srgb", VImage::option() ->set("input_profile", "cmyk") ->set("intent", VIPS_INTENT_PERCEPTUAL)); } // Flatten image to remove alpha channel if (baton->flatten && HasAlpha(image)) { // Scale up 8-bit values to match 16-bit input image double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0; // Background colour std::vector<double> background { baton->flattenBackground[0] * multiplier, baton->flattenBackground[1] * multiplier, baton->flattenBackground[2] * multiplier }; image = image.flatten(VImage::option() ->set("background", background)); } // Negate the colours in the image if (baton->negate) { image = image.invert(); } // Gamma encoding (darken) if (baton->gamma >= 1 && baton->gamma <= 3) { image = sharp::Gamma(image, 1.0 / baton->gamma); } // Convert to greyscale (linear, therefore after gamma encoding, if any) if (baton->greyscale) { image = image.colourspace(VIPS_INTERPRETATION_B_W); } bool const shouldResize = xfactor != 1.0 || yfactor != 1.0; bool const shouldBlur = baton->blurSigma != 0.0; bool const shouldConv = baton->convKernelWidth * baton->convKernelHeight > 0; bool const shouldSharpen = baton->sharpenSigma != 0.0; bool const shouldApplyMedian = baton->medianSize > 0; bool const shouldComposite = !baton->composite.empty(); bool const shouldModulate = baton->brightness != 1.0 || baton->saturation != 1.0 || baton->hue != 0.0; if (shouldComposite && !HasAlpha(image)) { image = sharp::EnsureAlpha(image); } bool const shouldPremultiplyAlpha = HasAlpha(image) && (shouldResize || shouldBlur || shouldConv || shouldSharpen || shouldComposite); // Premultiply image alpha channel before all transformations to avoid // dark fringing around bright pixels // See: http://entropymine.com/imageworsener/resizealpha/ if (shouldPremultiplyAlpha) { image = image.premultiply(); } // Resize if (shouldResize) { VipsKernel kernel = static_cast<VipsKernel>( vips_enum_from_nick(nullptr, VIPS_TYPE_KERNEL, baton->kernel.data())); if ( kernel != VIPS_KERNEL_NEAREST && kernel != VIPS_KERNEL_CUBIC && kernel != VIPS_KERNEL_LANCZOS2 && kernel != VIPS_KERNEL_LANCZOS3 && kernel != VIPS_KERNEL_MITCHELL ) { throw vips::VError("Unknown kernel"); } // Ensure shortest edge is at least 1 pixel if (image.width() / xfactor < 0.5) { xfactor = 2 * image.width(); baton->width = 1; } if (image.height() / yfactor < 0.5) { yfactor = 2 * image.height(); baton->height = 1; } image = image.resize(1.0 / xfactor, VImage::option() ->set("vscale", 1.0 / yfactor) ->set("kernel", kernel)); } // Rotate post-extract 90-angle if (!baton->rotateBeforePreExtract && rotation != VIPS_ANGLE_D0) { image = image.rot(rotation); image = sharp::RemoveExifOrientation(image); } // Flip (mirror about Y axis) if (baton->flip) { image = image.flip(VIPS_DIRECTION_VERTICAL); image = sharp::RemoveExifOrientation(image); } // Flop (mirror about X axis) if (baton->flop) { image = image.flip(VIPS_DIRECTION_HORIZONTAL); image = sharp::RemoveExifOrientation(image); } // Join additional color channels to the image if (baton->joinChannelIn.size() > 0) { VImage joinImage; ImageType joinImageType = ImageType::UNKNOWN; for (unsigned int i = 0; i < baton->joinChannelIn.size(); i++) { std::tie(joinImage, joinImageType) = sharp::OpenInput(baton->joinChannelIn[i], baton->accessMethod); image = image.bandjoin(joinImage); } image = image.copy(VImage::option()->set("interpretation", baton->colourspace)); } // Crop/embed if (image.width() != baton->width || image.height() != baton->height) { if (baton->canvas == Canvas::EMBED) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->resizeBackground); // Embed // Calculate where to position the embeded image if gravity specified, else center. int left; int top; left = static_cast<int>(round((baton->width - image.width()) / 2)); top = static_cast<int>(round((baton->height - image.height()) / 2)); int width = std::max(image.width(), baton->width); int height = std::max(image.height(), baton->height); std::tie(left, top) = sharp::CalculateEmbedPosition( image.width(), image.height(), baton->width, baton->height, baton->position); image = image.embed(left, top, width, height, VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background)); } else if ( baton->canvas != Canvas::IGNORE_ASPECT && (image.width() > baton->width || image.height() > baton->height) ) { // Crop/max/min if (baton->position < 9) { // Gravity-based crop int left; int top; std::tie(left, top) = sharp::CalculateCrop( image.width(), image.height(), baton->width, baton->height, baton->position); int width = std::min(image.width(), baton->width); int height = std::min(image.height(), baton->height); image = image.extract_area(left, top, width, height); } else { // Attention-based or Entropy-based crop if (baton->width > image.width()) { baton->width = image.width(); } if (baton->height > image.height()) { baton->height = image.height(); } image = image.tilecache(VImage::option() ->set("access", baton->accessMethod) ->set("threaded", TRUE)); image = image.smartcrop(baton->width, baton->height, VImage::option() ->set("interesting", baton->position == 16 ? VIPS_INTERESTING_ENTROPY : VIPS_INTERESTING_ATTENTION)); baton->hasCropOffset = true; baton->cropOffsetLeft = static_cast<int>(image.xoffset()); baton->cropOffsetTop = static_cast<int>(image.yoffset()); } } } // Rotate post-extract non-90 angle if (!baton->rotateBeforePreExtract && baton->rotationAngle != 0.0) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->rotationBackground); image = image.rotate(baton->rotationAngle, VImage::option()->set("background", background)); } // Post extraction if (baton->topOffsetPost != -1) { image = image.extract_area( baton->leftOffsetPost, baton->topOffsetPost, baton->widthPost, baton->heightPost); } // Extend edges if (baton->extendTop > 0 || baton->extendBottom > 0 || baton->extendLeft > 0 || baton->extendRight > 0) { std::vector<double> background; std::tie(image, background) = sharp::ApplyAlpha(image, baton->extendBackground); // Embed baton->width = image.width() + baton->extendLeft + baton->extendRight; baton->height = image.height() + baton->extendTop + baton->extendBottom; image = image.embed(baton->extendLeft, baton->extendTop, baton->width, baton->height, VImage::option()->set("extend", VIPS_EXTEND_BACKGROUND)->set("background", background)); } // Median - must happen before blurring, due to the utility of blurring after thresholding if (shouldApplyMedian) { image = image.median(baton->medianSize); } // Threshold - must happen before blurring, due to the utility of blurring after thresholding if (baton->threshold != 0) { image = sharp::Threshold(image, baton->threshold, baton->thresholdGrayscale); } // Blur if (shouldBlur) { image = sharp::Blur(image, baton->blurSigma); } // Convolve if (shouldConv) { image = sharp::Convolve(image, baton->convKernelWidth, baton->convKernelHeight, baton->convKernelScale, baton->convKernelOffset, baton->convKernel); } // Recomb if (baton->recombMatrix != NULL) { image = sharp::Recomb(image, baton->recombMatrix); } if (shouldModulate) { image = sharp::Modulate(image, baton->brightness, baton->saturation, baton->hue); } // Sharpen if (shouldSharpen) { image = sharp::Sharpen(image, baton->sharpenSigma, baton->sharpenFlat, baton->sharpenJagged); } // Composite if (shouldComposite) { for (Composite *composite : baton->composite) { VImage compositeImage; ImageType compositeImageType = ImageType::UNKNOWN; std::tie(compositeImage, compositeImageType) = OpenInput(composite->input, baton->accessMethod); // Verify within current dimensions if (compositeImage.width() > image.width() || compositeImage.height() > image.height()) { throw vips::VError("Image to composite must have same dimensions or smaller"); } // Check if overlay is tiled if (composite->tile) { int across = 0; int down = 0; // Use gravity in overlay if (compositeImage.width() <= baton->width) { across = static_cast<int>(ceil(static_cast<double>(image.width()) / compositeImage.width())); } if (compositeImage.height() <= baton->height) { down = static_cast<int>(ceil(static_cast<double>(image.height()) / compositeImage.height())); } if (across != 0 || down != 0) { int left; int top; compositeImage = compositeImage.replicate(across, down); if (composite->left >= 0 && composite->top >= 0) { std::tie(left, top) = sharp::CalculateCrop( compositeImage.width(), compositeImage.height(), image.width(), image.height(), composite->left, composite->top); } else { std::tie(left, top) = sharp::CalculateCrop( compositeImage.width(), compositeImage.height(), image.width(), image.height(), composite->gravity); } compositeImage = compositeImage.extract_area(left, top, image.width(), image.height()); } // gravity was used for extract_area, set it back to its default value of 0 composite->gravity = 0; } // Ensure image to composite is sRGB with premultiplied alpha compositeImage = compositeImage.colourspace(VIPS_INTERPRETATION_sRGB); if (!HasAlpha(compositeImage)) { compositeImage = sharp::EnsureAlpha(compositeImage); } if (!composite->premultiplied) compositeImage = compositeImage.premultiply(); // Calculate position int left; int top; if (composite->left >= 0 && composite->top >= 0) { // Composite image at given offsets std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(), compositeImage.width(), compositeImage.height(), composite->left, composite->top); } else { // Composite image with given gravity std::tie(left, top) = sharp::CalculateCrop(image.width(), image.height(), compositeImage.width(), compositeImage.height(), composite->gravity); } // Composite image = image.composite2(compositeImage, composite->mode, VImage::option() ->set("premultiplied", TRUE) ->set("x", left) ->set("y", top)); } } // Reverse premultiplication after all transformations: if (shouldPremultiplyAlpha) { image = image.unpremultiply(); // Cast pixel values to integer if (sharp::Is16Bit(image.interpretation())) { image = image.cast(VIPS_FORMAT_USHORT); } else { image = image.cast(VIPS_FORMAT_UCHAR); } } baton->premultiplied = shouldPremultiplyAlpha; // Gamma decoding (brighten) if (baton->gammaOut >= 1 && baton->gammaOut <= 3) { image = sharp::Gamma(image, baton->gammaOut); } // Linear adjustment (a * in + b) if (baton->linearA != 1.0 || baton->linearB != 0.0) { image = sharp::Linear(image, baton->linearA, baton->linearB); } // Apply normalisation - stretch luminance to cover full dynamic range if (baton->normalise) { image = sharp::Normalise(image); } // Apply bitwise boolean operation between images if (baton->boolean != nullptr) { VImage booleanImage; ImageType booleanImageType = ImageType::UNKNOWN; std::tie(booleanImage, booleanImageType) = sharp::OpenInput(baton->boolean, baton->accessMethod); image = sharp::Boolean(image, booleanImage, baton->booleanOp); } // Apply per-channel Bandbool bitwise operations after all other operations if (baton->bandBoolOp >= VIPS_OPERATION_BOOLEAN_AND && baton->bandBoolOp < VIPS_OPERATION_BOOLEAN_LAST) { image = sharp::Bandbool(image, baton->bandBoolOp); } // Tint the image if (baton->tintA < 128.0 || baton->tintB < 128.0) { image = sharp::Tint(image, baton->tintA, baton->tintB); } // Extract an image channel (aka vips band) if (baton->extractChannel > -1) { if (baton->extractChannel >= image.bands()) { (baton->err).append("Cannot extract channel from image. Too few channels in image."); return Error(); } VipsInterpretation const interpretation = sharp::Is16Bit(image.interpretation()) ? VIPS_INTERPRETATION_GREY16 : VIPS_INTERPRETATION_B_W; image = image .extract_band(baton->extractChannel) .copy(VImage::option()->set("interpretation", interpretation)); } // Remove alpha channel, if any if (baton->removeAlpha) { image = sharp::RemoveAlpha(image); } // Ensure alpha channel, if missing if (baton->ensureAlpha) { image = sharp::EnsureAlpha(image); } // Convert image to sRGB, if not already if (sharp::Is16Bit(image.interpretation())) { image = image.cast(VIPS_FORMAT_USHORT); } if (image.interpretation() != baton->colourspace) { // Convert colourspace, pass the current known interpretation so libvips doesn't have to guess image = image.colourspace(baton->colourspace, VImage::option()->set("source_space", image.interpretation())); // Transform colours from embedded profile to output profile if (baton->withMetadata && sharp::HasProfile(image)) { image = image.icc_transform(vips_enum_nick(VIPS_TYPE_INTERPRETATION, baton->colourspace), VImage::option()->set("embedded", TRUE)); } } // Override EXIF Orientation tag if (baton->withMetadata && baton->withMetadataOrientation != -1) { image = sharp::SetExifOrientation(image, baton->withMetadataOrientation); } // Number of channels used in output image baton->channels = image.bands(); baton->width = image.width(); baton->height = image.height(); // Output if (baton->fileOut.empty()) { // Buffer output if (baton->formatOut == "jpeg" || (baton->formatOut == "input" && inputImageType == ImageType::JPEG)) { // Write JPEG to buffer sharp::AssertImageTypeDimensions(image, ImageType::JPEG); VipsArea *area = VIPS_AREA(image.jpegsave_buffer(VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->jpegQuality) ->set("interlace", baton->jpegProgressive) ->set("no_subsample", baton->jpegChromaSubsampling == "4:4:4") ->set("trellis_quant", baton->jpegTrellisQuantisation) ->set("quant_table", baton->jpegQuantisationTable) ->set("overshoot_deringing", baton->jpegOvershootDeringing) ->set("optimize_scans", baton->jpegOptimiseScans) ->set("optimize_coding", baton->jpegOptimiseCoding))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "jpeg"; if (baton->colourspace == VIPS_INTERPRETATION_CMYK) { baton->channels = std::min(baton->channels, 4); } else { baton->channels = std::min(baton->channels, 3); } } else if (baton->formatOut == "png" || (baton->formatOut == "input" && (inputImageType == ImageType::PNG || inputImageType == ImageType::GIF || inputImageType == ImageType::SVG))) { // Write PNG to buffer sharp::AssertImageTypeDimensions(image, ImageType::PNG); VipsArea *area = VIPS_AREA(image.pngsave_buffer(VImage::option() ->set("strip", !baton->withMetadata) ->set("interlace", baton->pngProgressive) ->set("compression", baton->pngCompressionLevel) ->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE) ->set("palette", baton->pngPalette) ->set("Q", baton->pngQuality) ->set("colours", baton->pngColours) ->set("dither", baton->pngDither))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "png"; } else if (baton->formatOut == "webp" || (baton->formatOut == "input" && inputImageType == ImageType::WEBP)) { // Write WEBP to buffer sharp::AssertImageTypeDimensions(image, ImageType::WEBP); VipsArea *area = VIPS_AREA(image.webpsave_buffer(VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->webpQuality) ->set("lossless", baton->webpLossless) ->set("near_lossless", baton->webpNearLossless) ->set("smart_subsample", baton->webpSmartSubsample) ->set("reduction_effort", baton->webpReductionEffort) ->set("alpha_q", baton->webpAlphaQuality))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "webp"; } else if (baton->formatOut == "tiff" || (baton->formatOut == "input" && inputImageType == ImageType::TIFF)) { // Write TIFF to buffer if (baton->tiffCompression == VIPS_FOREIGN_TIFF_COMPRESSION_JPEG) { sharp::AssertImageTypeDimensions(image, ImageType::JPEG); } // Cast pixel values to float, if required if (baton->tiffPredictor == VIPS_FOREIGN_TIFF_PREDICTOR_FLOAT) { image = image.cast(VIPS_FORMAT_FLOAT); } VipsArea *area = VIPS_AREA(image.tiffsave_buffer(VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->tiffQuality) ->set("squash", baton->tiffSquash) ->set("compression", baton->tiffCompression) ->set("predictor", baton->tiffPredictor) ->set("pyramid", baton->tiffPyramid) ->set("tile", baton->tiffTile) ->set("tile_height", baton->tiffTileHeight) ->set("tile_width", baton->tiffTileWidth) ->set("xres", baton->tiffXres) ->set("yres", baton->tiffYres))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "tiff"; baton->channels = std::min(baton->channels, 3); } else if (baton->formatOut == "heif" || (baton->formatOut == "input" && inputImageType == ImageType::HEIF)) { // Write HEIF to buffer VipsArea *area = VIPS_AREA(image.heifsave_buffer(VImage::option() ->set("strip", !baton->withMetadata) ->set("compression", baton->heifCompression) ->set("Q", baton->heifQuality) ->set("lossless", baton->heifLossless))); baton->bufferOut = static_cast<char*>(area->data); baton->bufferOutLength = area->length; area->free_fn = nullptr; vips_area_unref(area); baton->formatOut = "heif"; } else if (baton->formatOut == "raw" || (baton->formatOut == "input" && inputImageType == ImageType::RAW)) { // Write raw, uncompressed image data to buffer if (baton->greyscale || image.interpretation() == VIPS_INTERPRETATION_B_W) { // Extract first band for greyscale image image = image[0]; baton->channels = 1; } if (image.format() != VIPS_FORMAT_UCHAR) { // Cast pixels to uint8 (unsigned char) image = image.cast(VIPS_FORMAT_UCHAR); } // Get raw image data baton->bufferOut = static_cast<char*>(image.write_to_memory(&baton->bufferOutLength)); if (baton->bufferOut == nullptr) { (baton->err).append("Could not allocate enough memory for raw output"); return Error(); } baton->formatOut = "raw"; } else { // Unsupported output format (baton->err).append("Unsupported output format "); if (baton->formatOut == "input") { (baton->err).append(ImageTypeId(inputImageType)); } else { (baton->err).append(baton->formatOut); } return Error(); } } else { // File output bool const isJpeg = sharp::IsJpeg(baton->fileOut); bool const isPng = sharp::IsPng(baton->fileOut); bool const isWebp = sharp::IsWebp(baton->fileOut); bool const isTiff = sharp::IsTiff(baton->fileOut); bool const isHeif = sharp::IsHeif(baton->fileOut); bool const isDz = sharp::IsDz(baton->fileOut); bool const isDzZip = sharp::IsDzZip(baton->fileOut); bool const isV = sharp::IsV(baton->fileOut); bool const mightMatchInput = baton->formatOut == "input"; bool const willMatchInput = mightMatchInput && !(isJpeg || isPng || isWebp || isTiff || isDz || isDzZip || isV); if (baton->formatOut == "jpeg" || (mightMatchInput && isJpeg) || (willMatchInput && inputImageType == ImageType::JPEG)) { // Write JPEG to file sharp::AssertImageTypeDimensions(image, ImageType::JPEG); image.jpegsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->jpegQuality) ->set("interlace", baton->jpegProgressive) ->set("no_subsample", baton->jpegChromaSubsampling == "4:4:4") ->set("trellis_quant", baton->jpegTrellisQuantisation) ->set("quant_table", baton->jpegQuantisationTable) ->set("overshoot_deringing", baton->jpegOvershootDeringing) ->set("optimize_scans", baton->jpegOptimiseScans) ->set("optimize_coding", baton->jpegOptimiseCoding)); baton->formatOut = "jpeg"; baton->channels = std::min(baton->channels, 3); } else if (baton->formatOut == "png" || (mightMatchInput && isPng) || (willMatchInput && (inputImageType == ImageType::PNG || inputImageType == ImageType::GIF || inputImageType == ImageType::SVG))) { // Write PNG to file sharp::AssertImageTypeDimensions(image, ImageType::PNG); image.pngsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata) ->set("interlace", baton->pngProgressive) ->set("compression", baton->pngCompressionLevel) ->set("filter", baton->pngAdaptiveFiltering ? VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE) ->set("palette", baton->pngPalette) ->set("Q", baton->pngQuality) ->set("colours", baton->pngColours) ->set("dither", baton->pngDither)); baton->formatOut = "png"; } else if (baton->formatOut == "webp" || (mightMatchInput && isWebp) || (willMatchInput && inputImageType == ImageType::WEBP)) { // Write WEBP to file sharp::AssertImageTypeDimensions(image, ImageType::WEBP); image.webpsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->webpQuality) ->set("lossless", baton->webpLossless) ->set("near_lossless", baton->webpNearLossless) ->set("smart_subsample", baton->webpSmartSubsample) ->set("reduction_effort", baton->webpReductionEffort) ->set("alpha_q", baton->webpAlphaQuality)); baton->formatOut = "webp"; } else if (baton->formatOut == "tiff" || (mightMatchInput && isTiff) || (willMatchInput && inputImageType == ImageType::TIFF)) { // Write TIFF to file if (baton->tiffCompression == VIPS_FOREIGN_TIFF_COMPRESSION_JPEG) { sharp::AssertImageTypeDimensions(image, ImageType::JPEG); } image.tiffsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->tiffQuality) ->set("squash", baton->tiffSquash) ->set("compression", baton->tiffCompression) ->set("predictor", baton->tiffPredictor) ->set("pyramid", baton->tiffPyramid) ->set("tile", baton->tiffTile) ->set("tile_height", baton->tiffTileHeight) ->set("tile_width", baton->tiffTileWidth) ->set("xres", baton->tiffXres) ->set("yres", baton->tiffYres)); baton->formatOut = "tiff"; baton->channels = std::min(baton->channels, 3); } else if (baton->formatOut == "heif" || (mightMatchInput && isHeif) || (willMatchInput && inputImageType == ImageType::HEIF)) { // Write HEIF to file #ifdef VIPS_TYPE_FOREIGN_HEIF_COMPRESSION if (sharp::IsAvif(baton->fileOut)) { baton->heifCompression = VIPS_FOREIGN_HEIF_COMPRESSION_AV1; } #endif image.heifsave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata) ->set("Q", baton->heifQuality) ->set("compression", baton->heifCompression) ->set("lossless", baton->heifLossless)); baton->formatOut = "heif"; } else if (baton->formatOut == "dz" || isDz || isDzZip) { if (isDzZip) { baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_ZIP; } // Forward format options through suffix std::string suffix; if (baton->tileFormat == "png") { std::vector<std::pair<std::string, std::string>> options { {"interlace", baton->pngProgressive ? "TRUE" : "FALSE"}, {"compression", std::to_string(baton->pngCompressionLevel)}, {"filter", baton->pngAdaptiveFiltering ? "all" : "none"} }; suffix = AssembleSuffixString(".png", options); } else if (baton->tileFormat == "webp") { std::vector<std::pair<std::string, std::string>> options { {"Q", std::to_string(baton->webpQuality)}, {"alpha_q", std::to_string(baton->webpAlphaQuality)}, {"lossless", baton->webpLossless ? "TRUE" : "FALSE"}, {"near_lossless", baton->webpNearLossless ? "TRUE" : "FALSE"}, {"smart_subsample", baton->webpSmartSubsample ? "TRUE" : "FALSE"}, {"reduction_effort", std::to_string(baton->webpReductionEffort)} }; suffix = AssembleSuffixString(".webp", options); } else { std::string extname = baton->tileLayout == VIPS_FOREIGN_DZ_LAYOUT_GOOGLE || baton->tileLayout == VIPS_FOREIGN_DZ_LAYOUT_ZOOMIFY ? ".jpg" : ".jpeg"; std::vector<std::pair<std::string, std::string>> options { {"Q", std::to_string(baton->jpegQuality)}, {"interlace", baton->jpegProgressive ? "TRUE" : "FALSE"}, {"no_subsample", baton->jpegChromaSubsampling == "4:4:4" ? "TRUE": "FALSE"}, {"trellis_quant", baton->jpegTrellisQuantisation ? "TRUE" : "FALSE"}, {"quant_table", std::to_string(baton->jpegQuantisationTable)}, {"overshoot_deringing", baton->jpegOvershootDeringing ? "TRUE": "FALSE"}, {"optimize_scans", baton->jpegOptimiseScans ? "TRUE": "FALSE"}, {"optimize_coding", baton->jpegOptimiseCoding ? "TRUE": "FALSE"} }; suffix = AssembleSuffixString(extname, options); } // Remove alpha channel from tile background if image does not contain an alpha channel if (!HasAlpha(image)) { baton->tileBackground.pop_back(); } // Write DZ to file vips::VOption *options = VImage::option() ->set("strip", !baton->withMetadata) ->set("tile_size", baton->tileSize) ->set("overlap", baton->tileOverlap) ->set("container", baton->tileContainer) ->set("layout", baton->tileLayout) ->set("suffix", const_cast<char*>(suffix.data())) ->set("angle", CalculateAngleRotation(baton->tileAngle)) ->set("background", baton->tileBackground) ->set("skip_blanks", baton->tileSkipBlanks); // libvips chooses a default depth based on layout. Instead of replicating that logic here by // not passing anything - libvips will handle choice if (baton->tileDepth < VIPS_FOREIGN_DZ_DEPTH_LAST) { options->set("depth", baton->tileDepth); } image.dzsave(const_cast<char*>(baton->fileOut.data()), options); baton->formatOut = "dz"; } else if (baton->formatOut == "v" || (mightMatchInput && isV) || (willMatchInput && inputImageType == ImageType::VIPS)) { // Write V to file image.vipssave(const_cast<char*>(baton->fileOut.data()), VImage::option() ->set("strip", !baton->withMetadata)); baton->formatOut = "v"; } else { // Unsupported output format (baton->err).append("Unsupported output format " + baton->fileOut); return Error(); } } } catch (vips::VError const &err) { (baton->err).append(err.what()); } // Clean up libvips' per-request data and threads vips_error_clear(); vips_thread_shutdown(); } void HandleOKCallback() { using Nan::New; using Nan::Set; Nan::HandleScope(); v8::Local<v8::Value> argv[3] = { Nan::Null(), Nan::Null(), Nan::Null() }; if (!baton->err.empty()) { // Error argv[0] = Nan::Error(baton->err.data()); } else { int width = baton->width; int height = baton->height; if (baton->topOffsetPre != -1 && (baton->width == -1 || baton->height == -1)) { width = baton->widthPre; height = baton->heightPre; } if (baton->topOffsetPost != -1) { width = baton->widthPost; height = baton->heightPost; } // Info Object v8::Local<v8::Object> info = New<v8::Object>(); Set(info, New("format").ToLocalChecked(), New<v8::String>(baton->formatOut).ToLocalChecked()); Set(info, New("width").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(width))); Set(info, New("height").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(height))); Set(info, New("channels").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->channels))); Set(info, New("premultiplied").ToLocalChecked(), New<v8::Boolean>(baton->premultiplied)); if (baton->hasCropOffset) { Set(info, New("cropOffsetLeft").ToLocalChecked(), New<v8::Int32>(static_cast<int32_t>(baton->cropOffsetLeft))); Set(info, New("cropOffsetTop").ToLocalChecked(), New<v8::Int32>(static_cast<int32_t>(baton->cropOffsetTop))); } if (baton->trimThreshold > 0.0) { Set(info, New("trimOffsetLeft").ToLocalChecked(), New<v8::Int32>(static_cast<int32_t>(baton->trimOffsetLeft))); Set(info, New("trimOffsetTop").ToLocalChecked(), New<v8::Int32>(static_cast<int32_t>(baton->trimOffsetTop))); } if (baton->bufferOutLength > 0) { // Pass ownership of output data to Buffer instance argv[1] = Nan::NewBuffer( static_cast<char*>(baton->bufferOut), baton->bufferOutLength, sharp::FreeCallback, nullptr) .ToLocalChecked(); // Add buffer size to info Set(info, New("size").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->bufferOutLength))); argv[2] = info; } else { // Add file size to info struct STAT64_STRUCT st; if (STAT64_FUNCTION(baton->fileOut.data(), &st) == 0) { Set(info, New("size").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(st.st_size))); } argv[1] = info; } } // Dispose of Persistent wrapper around input Buffers so they can be garbage collected std::accumulate(buffersToPersist.begin(), buffersToPersist.end(), 0, [this](uint32_t index, v8::Local<v8::Object> const buffer) -> uint32_t { GetFromPersistent(index); return index + 1; }); // Delete baton delete baton->input; delete baton->boolean; for (Composite *composite : baton->composite) { delete composite->input; delete composite; } for (sharp::InputDescriptor *input : baton->joinChannelIn) { delete input; } delete baton; // Handle warnings std::string warning = sharp::VipsWarningPop(); while (!warning.empty()) { v8::Local<v8::Value> message[1] = { New(warning).ToLocalChecked() }; debuglog->Call(1, message, async_resource); warning = sharp::VipsWarningPop(); } // Decrement processing task counter g_atomic_int_dec_and_test(&sharp::counterProcess); v8::Local<v8::Value> queueLength[1] = { New<v8::Uint32>(sharp::counterQueue) }; queueListener->Call(1, queueLength, async_resource); delete queueListener; // Return to JavaScript callback->Call(3, argv, async_resource); } private: PipelineBaton *baton; Nan::Callback *debuglog; Nan::Callback *queueListener; std::vector<v8::Local<v8::Object>> buffersToPersist; /* Calculate the angle of rotation and need-to-flip for the given Exif orientation By default, returns zero, i.e. no rotation. */ std::tuple<VipsAngle, bool, bool> CalculateExifRotationAndFlip(int const exifOrientation) { VipsAngle rotate = VIPS_ANGLE_D0; bool flip = FALSE; bool flop = FALSE; switch (exifOrientation) { case 6: rotate = VIPS_ANGLE_D90; break; case 3: rotate = VIPS_ANGLE_D180; break; case 8: rotate = VIPS_ANGLE_D270; break; case 2: flop = TRUE; break; // flop 1 case 7: flip = TRUE; rotate = VIPS_ANGLE_D90; break; // flip 6 case 4: flop = TRUE; rotate = VIPS_ANGLE_D180; break; // flop 3 case 5: flip = TRUE; rotate = VIPS_ANGLE_D270; break; // flip 8 } return std::make_tuple(rotate, flip, flop); } /* Calculate the rotation for the given angle. Supports any positive or negative angle that is a multiple of 90. */ VipsAngle CalculateAngleRotation(int angle) { angle = angle % 360; if (angle < 0) angle = 360 + angle; switch (angle) { case 90: return VIPS_ANGLE_D90; case 180: return VIPS_ANGLE_D180; case 270: return VIPS_ANGLE_D270; } return VIPS_ANGLE_D0; } /* Assemble the suffix argument to dzsave, which is the format (by extname) alo