sharp
Version:
High performance Node.js image processing, the fastest module to resize JPEG, PNG, WebP and TIFF images
302 lines (280 loc) • 9.59 kB
Plain Text
// Copyright 2013, 2014, 2015, 2016, 2017, 2018, 2019 Lovell Fuller and contributors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using vips::VImage;
using vips::VError;
namespace sharp {
/*
Removes alpha channel, if any.
*/
VImage RemoveAlpha(VImage image) {
if (HasAlpha(image)) {
image = image.extract_band(0, VImage::option()->set("n", image.bands() - 1));
}
return image;
}
/*
Ensures alpha channel, if missing.
*/
VImage EnsureAlpha(VImage image) {
if (!HasAlpha(image)) {
std::vector<double> alpha;
alpha.push_back(sharp::MaximumImageAlpha(image.interpretation()));
image = image.bandjoin_const(alpha);
}
return image;
}
/*
* Tint an image using the specified chroma, preserving the original image luminance
*/
VImage Tint(VImage image, double const a, double const b) {
// Get original colourspace
VipsInterpretation typeBeforeTint = image.interpretation();
if (typeBeforeTint == VIPS_INTERPRETATION_RGB) {
typeBeforeTint = VIPS_INTERPRETATION_sRGB;
}
// Extract luminance
VImage luminance = image.colourspace(VIPS_INTERPRETATION_LAB)[0];
// Create the tinted version by combining the L from the original and the chroma from the tint
std::vector<double> chroma {a, b};
VImage tinted = luminance
.bandjoin(chroma)
.copy(VImage::option()->set("interpretation", VIPS_INTERPRETATION_LAB))
.colourspace(typeBeforeTint);
// Attach original alpha channel, if any
if (HasAlpha(image)) {
// Extract original alpha channel
VImage alpha = image[image.bands() - 1];
// Join alpha channel to normalised image
tinted = tinted.bandjoin(alpha);
}
return tinted;
}
/*
* Stretch luminance to cover full dynamic range.
*/
VImage Normalise(VImage image) {
// Get original colourspace
VipsInterpretation typeBeforeNormalize = image.interpretation();
if (typeBeforeNormalize == VIPS_INTERPRETATION_RGB) {
typeBeforeNormalize = VIPS_INTERPRETATION_sRGB;
}
// Convert to LAB colourspace
VImage lab = image.colourspace(VIPS_INTERPRETATION_LAB);
// Extract luminance
VImage luminance = lab[0];
// Find luminance range
VImage stats = luminance.stats();
double min = stats(0, 0)[0];
double max = stats(1, 0)[0];
if (min != max) {
// Extract chroma
VImage chroma = lab.extract_band(1, VImage::option()->set("n", 2));
// Calculate multiplication factor and addition
double f = 100.0 / (max - min);
double a = -(min * f);
// Scale luminance, join to chroma, convert back to original colourspace
VImage normalized = luminance.linear(f, a).bandjoin(chroma).colourspace(typeBeforeNormalize);
// Attach original alpha channel, if any
if (HasAlpha(image)) {
// Extract original alpha channel
VImage alpha = image[image.bands() - 1];
// Join alpha channel to normalised image
return normalized.bandjoin(alpha);
} else {
return normalized;
}
}
return image;
}
/*
* Gamma encoding/decoding
*/
VImage Gamma(VImage image, double const exponent) {
if (HasAlpha(image)) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image).gamma(VImage::option()->set("exponent", exponent)).bandjoin(alpha);
} else {
return image.gamma(VImage::option()->set("exponent", exponent));
}
}
/*
* Gaussian blur. Use sigma of -1.0 for fast blur.
*/
VImage Blur(VImage image, double const sigma) {
if (sigma == -1.0) {
// Fast, mild blur - averages neighbouring pixels
VImage blur = VImage::new_matrixv(3, 3,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0);
blur.set("scale", 9.0);
return image.conv(blur);
} else {
// Slower, accurate Gaussian blur
return image.gaussblur(sigma);
}
}
/*
* Convolution with a kernel.
*/
VImage Convolve(VImage image, int const width, int const height,
double const scale, double const offset,
std::unique_ptr<double[]> const &kernel_v
) {
VImage kernel = VImage::new_from_memory(
kernel_v.get(),
width * height * sizeof(double),
width,
height,
1,
VIPS_FORMAT_DOUBLE);
kernel.set("scale", scale);
kernel.set("offset", offset);
return image.conv(kernel);
}
/*
* Recomb with a Matrix of the given bands/channel size.
* Eg. RGB will be a 3x3 matrix.
*/
VImage Recomb(VImage image, std::unique_ptr<double[]> const &matrix) {
double *m = matrix.get();
return image
.colourspace(VIPS_INTERPRETATION_sRGB)
.recomb(image.bands() == 3
? VImage::new_from_memory(
m, 9 * sizeof(double), 3, 3, 1, VIPS_FORMAT_DOUBLE
)
: VImage::new_matrixv(4, 4,
m[0], m[1], m[2], 0.0,
m[3], m[4], m[5], 0.0,
m[6], m[7], m[8], 0.0,
0.0, 0.0, 0.0, 1.0));
}
VImage Modulate(VImage image, double const brightness, double const saturation, int const hue) {
if (HasAlpha(image)) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image)
.colourspace(VIPS_INTERPRETATION_LCH)
.linear(
{ brightness, saturation, 1},
{ 0.0, 0.0, static_cast<double>(hue) }
)
.colourspace(VIPS_INTERPRETATION_sRGB)
.bandjoin(alpha);
} else {
return image
.colourspace(VIPS_INTERPRETATION_LCH)
.linear(
{ brightness, saturation, 1 },
{ 0.0, 0.0, static_cast<double>(hue) }
)
.colourspace(VIPS_INTERPRETATION_sRGB);
}
}
/*
* Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen.
*/
VImage Sharpen(VImage image, double const sigma, double const flat, double const jagged) {
if (sigma == -1.0) {
// Fast, mild sharpen
VImage sharpen = VImage::new_matrixv(3, 3,
-1.0, -1.0, -1.0,
-1.0, 32.0, -1.0,
-1.0, -1.0, -1.0);
sharpen.set("scale", 24.0);
return image.conv(sharpen);
} else {
// Slow, accurate sharpen in LAB colour space, with control over flat vs jagged areas
VipsInterpretation colourspaceBeforeSharpen = image.interpretation();
if (colourspaceBeforeSharpen == VIPS_INTERPRETATION_RGB) {
colourspaceBeforeSharpen = VIPS_INTERPRETATION_sRGB;
}
return image.sharpen(
VImage::option()->set("sigma", sigma)->set("m1", flat)->set("m2", jagged))
.colourspace(colourspaceBeforeSharpen);
}
}
VImage Threshold(VImage image, double const threshold, bool const thresholdGrayscale) {
if (!thresholdGrayscale) {
return image >= threshold;
}
return image.colourspace(VIPS_INTERPRETATION_B_W) >= threshold;
}
/*
Perform boolean/bitwise operation on image color channels - results in one channel image
*/
VImage Bandbool(VImage image, VipsOperationBoolean const boolean) {
image = image.bandbool(boolean);
return image.copy(VImage::option()->set("interpretation", VIPS_INTERPRETATION_B_W));
}
/*
Perform bitwise boolean operation between images
*/
VImage Boolean(VImage image, VImage imageR, VipsOperationBoolean const boolean) {
return image.boolean(imageR, boolean);
}
/*
Trim an image
*/
VImage Trim(VImage image, double const threshold) {
if (image.width() < 3 && image.height() < 3) {
throw VError("Image to trim must be at least 3x3 pixels");
}
// Top-left pixel provides the background colour
VImage background = image.extract_area(0, 0, 1, 1);
if (HasAlpha(background)) {
background = background.flatten();
}
int left, top, width, height;
left = image.find_trim(&top, &width, &height, VImage::option()
->set("background", background(0, 0))
->set("threshold", threshold));
if (width == 0 || height == 0) {
if (HasAlpha(image)) {
// Search alpha channel
VImage alpha = image[image.bands() - 1];
VImage backgroundAlpha = alpha.extract_area(0, 0, 1, 1);
left = alpha.find_trim(&top, &width, &height, VImage::option()
->set("background", backgroundAlpha(0, 0))
->set("threshold", threshold));
}
if (width == 0 || height == 0) {
throw VError("Unexpected error while trimming. Try to lower the tolerance");
}
}
return image.extract_area(left, top, width, height);
}
/*
* Calculate (a * in + b)
*/
VImage Linear(VImage image, double const a, double const b) {
if (HasAlpha(image)) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image).linear(a, b).bandjoin(alpha);
} else {
return image.linear(a, b);
}
}
} // namespace sharp