UNPKG

shaka-player

Version:
575 lines (527 loc) 14.9 kB
/*! @license * glMatrix: https://github.com/toji/gl-matrix/ * Copyright 2015-2021, Brandon Jones, Colin MacKenzie IV * SPDX-License-Identifier: MIT */ goog.provide('shaka.ui.Matrix4x4'); /** * 4x4 Matrix * Format: column-major, when typed out it looks like row-major * The matrices are being post multiplied. */ shaka.ui.Matrix4x4 = class { /** * Creates a new identity 4x4 Matrix * * @return {!Float32Array} a new 4x4 matrix */ static create() { const out = new Float32Array(16); out[0] = 1; out[5] = 1; out[10] = 1; out[15] = 1; return out; } /** * Generates a look-at matrix with the given eye position, focal point, and * up axis. * * @param {!Float32Array} out 4x4 matrix frustum matrix will be written into * @param {!Array<number>} eye Position of the viewer * @param {!Array<number>} center Point the viewer is looking at * @param {!Array<number>} up Vector pointing up * @return {!Float32Array} */ static lookAt(out, eye, center, up) { let x0; let x1; let x2; let y0; let y1; let y2; let z0; let z1; let z2; let len; const eyex = eye[0]; const eyey = eye[1]; const eyez = eye[2]; const upx = up[0]; const upy = up[1]; const upz = up[2]; const centerx = center[0]; const centery = center[1]; const centerz = center[2]; if (Math.abs(eyex - centerx) < shaka.ui.Matrix4x4.EPSILON_ && Math.abs(eyey - centery) < shaka.ui.Matrix4x4.EPSILON_ && Math.abs(eyez - centerz) < shaka.ui.Matrix4x4.EPSILON_) { return shaka.ui.Matrix4x4.identity_(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } /** * Scales the 4x4 matrix by the dimensions in the given vector not using * vectorization * * @param {!Float32Array} out the receiving matrix * @param {!Float32Array} a the matrix to scale * @param {!Array<number>} v the vector to scale the matrix by */ static scale(out, a, v) { const x = v[0]; const y = v[1]; const z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } /** * Generates a perspective projection matrix with the given bounds. * The near/far clip planes correspond to a normalized device coordinate Z * range of [-1, 1], which matches WebGL's clip volume. * Passing null/undefined/no value for far will generate infinite projection * matrix. * * @param {!Float32Array} out 4x4 matrix frustum matrix will be written into * @param {number} fovy Vertical field of view in radians * @param {number} aspect Aspect ratio. typically viewport width/height * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum, can be null or Infinity * @return {!Float32Array} */ static perspective(out, fovy, aspect, near, far) { const f = 1.0 / Math.tan(fovy / 2); out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[11] = -1; out[12] = 0; out[13] = 0; out[15] = 0; if (far != null && far !== Infinity) { const nf = 1 / (near - far); out[10] = (far + near) * nf; out[14] = 2 * far * near * nf; } else { out[10] = -1; out[14] = -2 * near; } return out; } /** * Multiplies two 4x4 matrix * * @param {!Float32Array} out the receiving matrix * @param {!Float32Array} a the first operand * @param {!Float32Array} b the second operand */ static multiply(out, a, b) { const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a10 = a[4]; const a11 = a[5]; const a12 = a[6]; const a13 = a[7]; const a20 = a[8]; const a21 = a[9]; const a22 = a[10]; const a23 = a[11]; const a30 = a[12]; const a31 = a[13]; const a32 = a[14]; const a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0]; let b1 = b[1]; let b2 = b[2]; let b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; } /** * Generates a frustum matrix with the given bounds * * @param {!Float32Array} out 4x4 matrix frustum matrix will be written into * @param {number} left Left bound of the frustum * @param {number} right Right bound of the frustum * @param {number} bottom Bottom bound of the frustum * @param {number} top Top bound of the frustum * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @return {!Float32Array} */ static frustum(out, left, right, bottom, top, near, far) { const rl = 1 / (right - left); const tb = 1 / (top - bottom); const nf = 1 / (near - far); out[0] = near * 2 * rl; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = near * 2 * tb; out[6] = 0; out[7] = 0; out[8] = (right + left) * rl; out[9] = (top + bottom) * tb; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = far * near * 2 * nf; out[15] = 0; return out; } /** * Rotates a matrix by the given angle around the X axis * * @param {!Float32Array} out the receiving matrix * @param {!Float32Array} a the matrix to rotate * @param {number} rad the angle to rotate the matrix by */ static rotateX(out, a, rad) { const s = Math.sin(rad); const c = Math.cos(rad); const a10 = a[4]; const a11 = a[5]; const a12 = a[6]; const a13 = a[7]; const a20 = a[8]; const a21 = a[9]; const a22 = a[10]; const a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[4] = a10 * c + a20 * s; out[5] = a11 * c + a21 * s; out[6] = a12 * c + a22 * s; out[7] = a13 * c + a23 * s; out[8] = a20 * c - a10 * s; out[9] = a21 * c - a11 * s; out[10] = a22 * c - a12 * s; out[11] = a23 * c - a13 * s; } /** * Rotates a matrix by the given angle around the Y axis * * @param {!Float32Array} out the receiving matrix * @param {!Float32Array} a the matrix to rotate * @param {number} rad the angle to rotate the matrix by */ static rotateY(out, a, rad) { const s = Math.sin(rad); const c = Math.cos(rad); const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a20 = a[8]; const a21 = a[9]; const a22 = a[10]; const a23 = a[11]; if (a !== out) { // If the source and destination differ, copy the unchanged rows out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c - a20 * s; out[1] = a01 * c - a21 * s; out[2] = a02 * c - a22 * s; out[3] = a03 * c - a23 * s; out[8] = a00 * s + a20 * c; out[9] = a01 * s + a21 * c; out[10] = a02 * s + a22 * c; out[11] = a03 * s + a23 * c; } /** * Rotates a matrix by the given angle around the Z axis * * @param {!Float32Array} out the receiving matrix * @param {!Float32Array} a the matrix to rotate * @param {number} rad the angle to rotate the matrix by */ static rotateZ(out, a, rad) { const s = Math.sin(rad); const c = Math.cos(rad); const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a10 = a[4]; const a11 = a[5]; const a12 = a[6]; const a13 = a[7]; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } // Perform axis-specific matrix multiplication out[0] = a00 * c + a10 * s; out[1] = a01 * c + a11 * s; out[2] = a02 * c + a12 * s; out[3] = a03 * c + a13 * s; out[4] = a10 * c - a00 * s; out[5] = a11 * c - a01 * s; out[6] = a12 * c - a02 * s; out[7] = a13 * c - a03 * s; } /** * Returns a quaternion representing the rotational component * of a transformation matrix. If a matrix is built with * fromRotationTranslation, the returned quaternion will be the * same as the quaternion originally supplied. * @param {!Float32Array} out Quaternion to receive the rotation component * @param {!Float32Array} mat Matrix to be decomposed (input) * @return {!Float32Array} */ static getRotation(out, mat) { const scaling = new Float32Array(3); shaka.ui.Matrix4x4.getScaling_(scaling, mat); const is1 = 1 / scaling[0]; const is2 = 1 / scaling[1]; const is3 = 1 / scaling[2]; const sm11 = mat[0] * is1; const sm12 = mat[1] * is2; const sm13 = mat[2] * is3; const sm21 = mat[4] * is1; const sm22 = mat[5] * is2; const sm23 = mat[6] * is3; const sm31 = mat[8] * is1; const sm32 = mat[9] * is2; const sm33 = mat[10] * is3; const trace = sm11 + sm22 + sm33; let S = 0; if (trace > 0) { S = Math.sqrt(trace + 1.0) * 2; out[3] = 0.25 * S; out[0] = (sm23 - sm32) / S; out[1] = (sm31 - sm13) / S; out[2] = (sm12 - sm21) / S; } else if (sm11 > sm22 && sm11 > sm33) { S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2; out[3] = (sm23 - sm32) / S; out[0] = 0.25 * S; out[1] = (sm12 + sm21) / S; out[2] = (sm31 + sm13) / S; } else if (sm22 > sm33) { S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2; out[3] = (sm31 - sm13) / S; out[0] = (sm12 + sm21) / S; out[1] = 0.25 * S; out[2] = (sm23 + sm32) / S; } else { S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2; out[3] = (sm12 - sm21) / S; out[0] = (sm31 + sm13) / S; out[1] = (sm23 + sm32) / S; out[2] = 0.25 * S; } return out; } /** * Calculates a 4x4 matrix from the given quaternion * * @param {!Float32Array} out 4x4 matrix receiving operation result * @param {!Float32Array} q Quaternion to create matrix from */ static fromQuat(out, q) { const x = q[0]; const y = q[1]; const z = q[2]; const w = q[3]; const x2 = x + x; const y2 = y + y; const z2 = z + z; const xx = x * x2; const yx = y * x2; const yy = y * y2; const zx = z * x2; const zy = z * y2; const zz = z * z2; const wx = w * x2; const wy = w * y2; const wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; } /** * Set a 4x4 matrix to the identity matrix * * @param {!Float32Array} out the receiving matrix * @return {!Float32Array} * @private */ static identity_(out) { for (let i = 0; i < 16; i++) { out[i] = (i % 5) == 0 ? 1 : 0; } return out; } /** * Returns the scaling factor component of a transformation * matrix. If a matrix is built with fromRotationTranslationScale * with a normalized Quaternion parameter, the returned vector will be * the same as the scaling vector * originally supplied. * @param {!Float32Array} out Vector to receive scaling factor component * @param {!Float32Array} mat Matrix to be decomposed (input) * @private */ static getScaling_(out, mat) { const m11 = mat[0]; const m12 = mat[1]; const m13 = mat[2]; const m21 = mat[4]; const m22 = mat[5]; const m23 = mat[6]; const m31 = mat[8]; const m32 = mat[9]; const m33 = mat[10]; out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); } }; /** * @const {number} * @private */ shaka.ui.Matrix4x4.EPSILON_ = 0.000001;