UNPKG

sf-agent-framework

Version:

AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction

419 lines (306 loc) 9.34 kB
# Solution Design Task This task guides the creation of comprehensive technical solution designs for Salesforce implementations following the Well-Architected Framework. ## Purpose Enable architects to: - Design scalable solutions - Document architectural decisions - Ensure platform alignment - Address non-functional requirements - Create implementation roadmaps ## Solution Design Framework ### 1. Business Context Analysis **Understanding the Problem** ```yaml Business Objectives: - Primary goals - Success metrics - Timeline constraints - Budget considerations Stakeholders: - Executive sponsors - Business users - Technical teams - External partners Current State: - Existing systems - Pain points - Technical debt - Integration landscape ``` ### 2. Solution Architecture Components **High-Level Architecture** ``` ┌─────────────────────────────────────────────┐ External Systems (ERP, Marketing, Data Warehouse) └─────────────┬───────────────┬───────────────┘ ┌────▼───┐ ┌────▼───┐ API Middle │Gateway ware └────┬───┘ └────┬───┘ ┌─────────────▼───────────────▼───────────────┐ Salesforce Platform ├─────────────────────────────────────────────┤ ┌─────────┐ ┌─────────┐ ┌─────────┐ Sales │Service │Marketing│ Cloud Cloud Cloud └─────────┘ └─────────┘ └─────────┘ ├─────────────────────────────────────────────┤ ┌─────────────────────────────────────┐ Custom Objects & Applications └─────────────────────────────────────┘ ├─────────────────────────────────────────────┤ ┌─────────┐ ┌─────────┐ ┌─────────┐ │Platform Data │Analytics│ │Services Layer & │Reports └─────────┘ └─────────┘ └─────────┘ └─────────────────────────────────────────────┘ ``` ### 3. Data Architecture **Data Model Design** ```yaml Core Objects: Account: - Standard fields - Custom fields - Relationships - Record types Custom Objects: Project__c: - Fields - Relationships - Sharing model - Triggers Data Volumes: - Current volumes - Growth projections - Archival strategy - Performance considerations Data Quality: - Validation rules - Duplicate management - Data enrichment - Cleansing processes ``` ### 4. Integration Architecture **Integration Patterns** ```yaml Pattern Selection: Real-time: - REST API - Platform Events - Streaming API Use when: Immediate sync required Near Real-time: - Change Data Capture - Outbound Messages Use when: Minutes delay acceptable Batch: - Bulk API - ETL/ELT Use when: Hours delay acceptable Integration Inventory: System A: - Pattern: REST API - Direction: Bidirectional - Frequency: Real-time - Volume: 1000 transactions/day - Error handling: Retry with exponential backoff ``` ### 5. Security Architecture **Security Layers** ```yaml Authentication: - SSO with SAML - MFA enforcement - Session policies Authorization: - Role hierarchy - Sharing rules - Permission sets - Field-level security Encryption: - Shield encryption - Field encryption - File encryption Monitoring: - Event monitoring - Login forensics - Transaction security ``` ## Design Patterns ### 1. Multi-Cloud Architecture ```yaml Sales Cloud: Objects: - Lead - Account - Contact - Opportunity Processes: - Lead conversion - Opportunity management - Forecasting Service Cloud: Objects: - Case - Knowledge - Entitlement Processes: - Case management - Knowledge base - SLA tracking Integration Points: - Account synchronization - Contact sharing - Case creation from opportunities ``` ### 2. Large Data Volume (LDV) Solutions ```yaml Strategies: Skinny Tables: - For wide objects - Frequently queried fields Custom Indexes: - Selective fields - Query optimization Archival: - Big Objects - External systems - Heroku Postgres Partitioning: - By region - By time period - By business unit ``` ### 3. Event-Driven Architecture ```yaml Platform Events: Order_Event__e: - Publisher: Order Management System - Subscribers: - Inventory Service - Shipping Service - Analytics Service - Error handling: Dead letter queue Change Data Capture: Objects: - Account - Contact - Custom__c Subscribers: - Data warehouse - Analytics platform ``` ## Solution Documentation ### Architecture Decision Records (ADR) **ADR Template** ```markdown # ADR-001: Choice of Integration Pattern ## Status Accepted ## Context Need to sync order data between Salesforce and ERP system with <5 minute latency. ## Decision Use Platform Events for ERP to Salesforce communication and REST API for Salesforce to ERP. ## Consequences - **Positive**: Loosely coupled, scalable, near real-time - **Negative**: Additional complexity, requires event replay handling - **Neutral**: Requires middleware for transformation ## Alternatives Considered 1. Direct REST API - Too tightly coupled 2. Batch ETL - Doesn't meet latency requirements 3. Streaming API - One-way only ``` ### Technical Design Document Structure ```markdown # Technical Design: [Solution Name] ## Executive Summary [Brief overview of solution] ## Business Requirements [What business problem are we solving] ## Solution Overview [High-level solution description] ## Detailed Design ### Data Model [Objects, fields, relationships] ### Security Model [Roles, profiles, permission sets, sharing] ### Integration Design [Systems, patterns, data flows] ### User Experience [Page layouts, Lightning pages, mobile] ### Automation [Flows, triggers, batch jobs] ## Non-Functional Requirements ### Performance - Page load: <3 seconds - Bulk operations: 10k records/hour - API response: <500ms ### Scalability - Users: Support 10x growth - Data: 100M records over 5 years - Transactions: 1M/day peak ### Security - Encryption requirements - Compliance needs - Audit requirements ### Availability - 99.9% uptime - RTO: 4 hours - RPO: 1 hour ## Implementation Plan [Phases, timelines, dependencies] ## Risks and Mitigations [Technical risks and mitigation strategies] ## Success Criteria [How we measure success] ``` ## Architectural Principles ### 1. Salesforce First - Use platform features before custom - Declarative before programmatic - Standard before custom objects ### 2. Loosely Coupled - Service-oriented design - Event-driven communication - Minimal dependencies ### 3. Scalable by Design - Handle 10x growth - Performance budgets - Efficient data model ### 4. Secure by Default - Least privilege access - Defense in depth - Audit everything ### 5. User-Centric - Intuitive interfaces - Mobile-responsive - Accessible design ## Review Checklist ### Well-Architected Review - [ ] **Trusted**: Security, compliance, privacy addressed - [ ] **Easy**: Simple to use, well-documented - [ ] **Adaptable**: Flexible, maintainable, scalable - [ ] **Efficient**: Performant, cost-effective ### Technical Review - [ ] Data model optimized - [ ] Security model defined - [ ] Integration patterns appropriate - [ ] Performance targets achievable - [ ] Governance model established ### Business Alignment - [ ] Solves stated business problem - [ ] ROI justifiable - [ ] Timeline realistic - [ ] Resources available ## Success Criteria Comprehensive solution design All stakeholders aligned Technical feasibility confirmed Risks identified and mitigated Implementation plan clear Success metrics defined Architecture review passed