sf-agent-framework
Version:
AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction
97 lines (77 loc) • 2.29 kB
Markdown
# LDV Optimization
## Purpose
Optimize Salesforce implementations for Large Data Volumes (LDV) to ensure
performance, scalability, and platform stability.
## Instructions
1. **Data Volume Assessment**
- Analyze current data volumes
- Project growth rates
- Identify large objects
- Review data distribution
- Assess query patterns
2. **Performance Analysis**
- Profile slow queries
- Identify non-selective filters
- Review sharing calculations
- Analyze report performance
- Check integration impacts
3. **Indexing Strategy**
- Design custom indexes
- Optimize standard indexes
- Plan composite indexes
- Consider skinny tables
- Review index usage
4. **Data Architecture Optimization**
- Implement data archiving
- Design efficient relationships
- Optimize field types
- Reduce formula fields
- Minimize roll-up summaries
5. **Query Optimization**
- Improve SOQL selectivity
- Optimize filter conditions
- Reduce query complexity
- Implement query pagination
- Use aggregate queries efficiently
6. **Platform Features**
- Configure Big Objects
- Implement Platform Cache
- Use External Objects
- Enable Skinny Tables
- Configure Custom Indexes
## Input Requirements
- Data volume metrics
- Query performance logs
- Object relationships
- Usage patterns
- Growth projections
- Performance requirements
## Output Format
- LDV Optimization Plan:
- Volume analysis report
- Performance assessment
- Optimization recommendations
- Implementation roadmap
- Monitoring approach
- Success metrics
## Optimization Techniques
- **Data Model**: Denormalization, archiving
- **Indexing**: Custom indexes, skinny tables
- **Queries**: Selectivity, pagination
- **Sharing**: OWD optimization, ownership
- **Processing**: Batch, async, queueable
- **Caching**: Platform cache, custom cache
## Performance Thresholds
- Query timeout: 120 seconds
- Index selectivity: <10% of records
- Sharing recalculation: <2M records
- Report timeout: 10 minutes
- API timeout: varies by type
## Best Practices
- Design for scale from start
- Archive historical data
- Monitor continuously
- Test with production volumes
- Use selective queries
- Optimize sharing model
- Leverage platform features