UNPKG

sf-agent-framework

Version:

AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction

97 lines (77 loc) 2.29 kB
# LDV Optimization ## Purpose Optimize Salesforce implementations for Large Data Volumes (LDV) to ensure performance, scalability, and platform stability. ## Instructions 1. **Data Volume Assessment** - Analyze current data volumes - Project growth rates - Identify large objects - Review data distribution - Assess query patterns 2. **Performance Analysis** - Profile slow queries - Identify non-selective filters - Review sharing calculations - Analyze report performance - Check integration impacts 3. **Indexing Strategy** - Design custom indexes - Optimize standard indexes - Plan composite indexes - Consider skinny tables - Review index usage 4. **Data Architecture Optimization** - Implement data archiving - Design efficient relationships - Optimize field types - Reduce formula fields - Minimize roll-up summaries 5. **Query Optimization** - Improve SOQL selectivity - Optimize filter conditions - Reduce query complexity - Implement query pagination - Use aggregate queries efficiently 6. **Platform Features** - Configure Big Objects - Implement Platform Cache - Use External Objects - Enable Skinny Tables - Configure Custom Indexes ## Input Requirements - Data volume metrics - Query performance logs - Object relationships - Usage patterns - Growth projections - Performance requirements ## Output Format - LDV Optimization Plan: - Volume analysis report - Performance assessment - Optimization recommendations - Implementation roadmap - Monitoring approach - Success metrics ## Optimization Techniques - **Data Model**: Denormalization, archiving - **Indexing**: Custom indexes, skinny tables - **Queries**: Selectivity, pagination - **Sharing**: OWD optimization, ownership - **Processing**: Batch, async, queueable - **Caching**: Platform cache, custom cache ## Performance Thresholds - Query timeout: 120 seconds - Index selectivity: <10% of records - Sharing recalculation: <2M records - Report timeout: 10 minutes - API timeout: varies by type ## Best Practices - Design for scale from start - Archive historical data - Monitor continuously - Test with production volumes - Use selective queries - Optimize sharing model - Leverage platform features