sf-agent-framework
Version:
AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction
99 lines (79 loc) • 2.45 kB
Markdown
# Data Mapping
## Purpose
Create detailed data mappings between source systems and Salesforce objects to
ensure accurate data migration and integration.
## Instructions
1. **Source System Analysis**
- Document source data structures
- Identify all data entities
- Map relationships and hierarchies
- Analyze data types and formats
- Review business logic and calculations
2. **Target Model Design**
- Map to Salesforce standard objects
- Design custom object requirements
- Define field-level mappings
- Plan relationship structures
- Consider platform limits
3. **Transformation Rules**
- Define data type conversions
- Document value transformations
- Create picklist mappings
- Design formula calculations
- Plan data enrichment logic
4. **Relationship Mapping**
- Map parent-child relationships
- Design lookup relationships
- Plan master-detail hierarchies
- Handle many-to-many relationships
- Resolve circular dependencies
5. **Data Quality Rules**
- Define validation criteria
- Create default value logic
- Design duplicate handling
- Plan error handling
- Document exception processes
6. **Migration Sequencing**
- Determine load order
- Identify dependencies
- Plan for reference data
- Design rollback approach
- Create validation checkpoints
## Input Requirements
- Source system data models
- Data dictionaries
- Business rules documentation
- Salesforce object model
- Integration requirements
- Data quality standards
## Output Format
- Data Mapping Specification including:
- Object-level mapping matrix
- Field-level mapping details
- Transformation rules catalog
- Relationship diagrams
- Load sequence plan
- Validation rules
- Test scenarios
## Mapping Components
- **Field Mapping**: Source → Target field
- **Value Mapping**: Data transformations
- **Relationship Mapping**: Foreign key resolution
- **Business Logic**: Calculations and derivations
- **Quality Rules**: Validation and defaults
## Common Transformations
- Date format conversions
- Picklist value mappings
- Currency conversions
- Text field truncation
- Number format changes
- Boolean conversions
- Reference data lookups
## Best Practices
- Document all assumptions
- Validate with business users
- Consider performance impacts
- Plan for data volume
- Test edge cases thoroughly
- Maintain mapping versions
- Build reusable components