sf-agent-framework
Version:
AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction
366 lines (275 loc) • 6.9 kB
Markdown
# Metrics Calculator Utility - Agent Instructions
## Purpose
This utility provides instructions for AI agents to generate comprehensive
metrics calculation solutions for Salesforce implementations, enabling
organizations to measure KPIs, performance metrics, and business outcomes.
## Agent Instructions
### When to Generate Metrics Calculation
Generate metrics calculation components when:
- KPIs need automated calculation
- Business metrics require tracking
- Performance indicators need measurement
- ROI calculations are required
- Adoption metrics need monitoring
- Quality scores need computation
- Compliance metrics need tracking
### Core Components to Generate
#### 1. Metrics Calculation Engine
Generate calculation components that:
- Compute complex business metrics
- Aggregate data across objects
- Apply weighted scoring algorithms
- Calculate time-based metrics
- Process statistical measures
- Generate composite scores
Key calculations to support:
- Sales metrics (pipeline, conversion, velocity)
- Service metrics (resolution time, satisfaction)
- Adoption metrics (usage, engagement)
- Quality metrics (accuracy, completeness)
- Performance metrics (speed, efficiency)
- Financial metrics (ROI, cost savings)
#### 2. Aggregation Framework
Create aggregation components for:
- Period-based rollups
- Hierarchical calculations
- Cross-object summaries
- Real-time aggregations
- Historical comparisons
- Predictive calculations
#### 3. Metrics Storage Manager
Implement storage for:
- Calculated metric values
- Historical snapshots
- Trend data
- Benchmark values
- Target tracking
- Variance analysis
### Configuration Requirements
#### Custom Objects
```yaml
Metric_Definition__c:
- Name (Text)
- Category__c (Picklist)
- Calculation_Formula__c (Long Text Area)
- Target_Value__c (Number)
- Frequency__c (Picklist)
- Active__c (Checkbox)
- Owner__c (Lookup to User)
Metric_Result__c:
- Metric_Definition__c (Master-Detail)
- Period_Start__c (Date)
- Period_End__c (Date)
- Calculated_Value__c (Number)
- Target_Value__c (Number)
- Variance__c (Number)
- Status__c (Picklist)
Metric_Component__c:
- Metric_Definition__c (Master-Detail)
- Object_Name__c (Text)
- Field_Name__c (Text)
- Aggregation_Type__c (Picklist)
- Filter_Criteria__c (Text Area)
- Weight__c (Number)
```
### Calculation Formulas to Implement
#### Sales Velocity
```
Sales Velocity = (Number of Opportunities × Average Deal Size × Win Rate) / Sales Cycle Length
```
#### Customer Lifetime Value
```
CLV = (Average Purchase Value × Purchase Frequency × Customer Lifespan) - Customer Acquisition Cost
```
#### Service Level Achievement
```
SLA = (Cases Resolved Within SLA / Total Cases) × 100
```
#### Adoption Score
```
Adoption = (Active Users × Feature Usage × Data Quality) / Total Users × 100
```
### Implementation Patterns
#### Real-time Calculation Pattern
1. Capture triggering event
2. Identify affected metrics
3. Recalculate values
4. Update storage
5. Trigger notifications
6. Refresh dashboards
#### Batch Calculation Pattern
1. Schedule calculation job
2. Query source data
3. Apply calculations
4. Store results
5. Generate snapshots
6. Send reports
#### Incremental Update Pattern
1. Track data changes
2. Calculate deltas
3. Update aggregates
4. Maintain accuracy
5. Optimize performance
### Metric Categories to Support
#### Business Metrics
- Revenue metrics
- Growth indicators
- Market share
- Customer metrics
- Profitability
- Efficiency ratios
#### Operational Metrics
- Process efficiency
- Resource utilization
- Cycle times
- Quality measures
- Productivity rates
- Cost metrics
#### Technical Metrics
- System performance
- API usage
- Storage utilization
- Error rates
- Response times
- Availability
### Dashboard Components to Generate
#### Executive Metrics Dashboard
Display:
- Key metric cards
- Trend visualizations
- Target vs actual
- YoY comparisons
- Predictive insights
- Action items
#### Operational Dashboard
Show:
- Real-time metrics
- Process indicators
- Team performance
- Quality scores
- Bottleneck analysis
- Improvement areas
#### Analytical Dashboard
Include:
- Historical trends
- Correlation analysis
- Variance reports
- Drill-down capabilities
- Custom calculations
- Export options
### Calculation Algorithms
#### Weighted Average
```
1. Define component weights
2. Calculate component values
3. Apply weights
4. Sum weighted values
5. Normalize if needed
```
#### Moving Average
```
1. Define period window
2. Collect historical data
3. Calculate period average
4. Slide window forward
5. Smooth variations
```
#### Percentile Ranking
```
1. Collect all values
2. Sort ascending
3. Calculate position
4. Determine percentile
5. Apply benchmarks
```
### Integration Requirements
#### Analytics Platform Integration
- Einstein Analytics
- Tableau CRM
- Power BI
- Custom analytics
- Real-time streaming
#### External System Integration
- ERP metrics import
- Financial systems
- Marketing platforms
- HR systems
- Custom databases
#### Notification Integration
- Threshold alerts
- Target achievements
- Anomaly detection
- Trend notifications
- Report distribution
### Best Practices to Implement
1. **Calculation Accuracy**
- Validate formulas
- Test edge cases
- Handle nulls
- Document logic
- Version control
2. **Performance Optimization**
- Efficient queries
- Indexed fields
- Batch processing
- Caching strategies
- Async calculations
3. **Data Quality**
- Input validation
- Error handling
- Missing data strategies
- Outlier detection
- Consistency checks
4. **Governance**
- Metric ownership
- Change control
- Access management
- Audit trails
- Documentation
### Advanced Features to Consider
1. **Predictive Analytics**
- Trend forecasting
- Anomaly prediction
- Goal achievement probability
- Risk indicators
- What-if scenarios
2. **Machine Learning Integration**
- Pattern recognition
- Automated insights
- Recommendation engine
- Optimization suggestions
- Adaptive thresholds
3. **Real-time Processing**
- Streaming calculations
- Event-driven updates
- Live dashboards
- Instant alerts
- Continuous monitoring
### Error Handling Instructions
Handle these scenarios:
1. Division by zero
2. Null values
3. Data type mismatches
4. Formula errors
5. Performance timeouts
Recovery strategies:
- Default values
- Error logging
- Calculation retry
- Manual override
- Notification alerts
### Testing Requirements
Generate test classes for:
1. Formula accuracy
2. Edge cases
3. Performance limits
4. Integration points
5. Error handling
### Success Metrics
Track and measure:
- Calculation accuracy
- Processing speed
- Dashboard usage
- Alert effectiveness
- User satisfaction
- Business impact