UNPKG

sf-agent-framework

Version:

AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction

364 lines (275 loc) 7.64 kB
# Data Profiler Utility - Agent Instructions ## Purpose This utility provides instructions for AI agents to generate comprehensive data profiling and quality assessment solutions for Salesforce organizations, enabling data-driven decision making and quality improvements. ## Agent Instructions ### When to Generate Data Profiling Generate data profiling components when: - Data migration projects need assessment - Data quality issues need identification - Compliance audits require data analysis - Integration projects need data mapping - Storage optimization is required - Duplicate data needs detection - Data governance needs metrics ### Core Components to Generate #### 1. Object Profiler Engine Generate an Apex class that: - Analyzes object schemas and metadata - Counts records and measures data volume - Profiles field usage and completeness - Maps relationships and dependencies - Detects record type distributions - Calculates storage utilization Key profiling capabilities: - Schema analysis with field metadata - Record count and growth trends - Field population statistics - Relationship mapping - Data type distribution - Storage impact analysis #### 2. Data Quality Analyzer Create components that: - Measure data completeness percentages - Identify data quality issues - Detect duplicate records - Validate data accuracy - Check referential integrity - Assess business rule compliance Quality metrics to calculate: - Completeness (null/empty values) - Uniqueness (duplicate detection) - Validity (format/pattern matching) - Accuracy (business rule validation) - Consistency (cross-field validation) - Timeliness (data age analysis) #### 3. Pattern Detection Engine Implement pattern analysis for: - Email format validation - Phone number patterns - Address standardization - Date format consistency - Numeric pattern detection - Custom pattern matching ### Configuration Requirements #### Custom Objects Create these objects: ```yaml Data_Profile__c: - Object_Name__c (Text) - Profile_Date__c (DateTime) - Record_Count__c (Number) - Field_Count__c (Number) - Storage_Size_MB__c (Number) - Quality_Score__c (Percent) - Completeness_Score__c (Percent) - Profile_Status__c (Picklist) Field_Profile__c: - Data_Profile__c (Master-Detail) - Field_Name__c (Text) - Field_Type__c (Text) - Populated_Count__c (Number) - Null_Count__c (Number) - Unique_Values__c (Number) - Completeness_Percent__c (Percent) - Common_Patterns__c (Long Text) Data_Quality_Issue__c: - Data_Profile__c (Lookup) - Issue_Type__c (Picklist) - Severity__c (Picklist) - Field_Name__c (Text) - Record_Count__c (Number) - Description__c (Text Area) - Recommendation__c (Text Area) ``` #### Profile Configuration ```yaml Profile_Config__mdt: - Object_Name__c (Text) - Include_In_Profile__c (Checkbox) - Required_Fields__c (Long Text) - Quality_Rules__c (Long Text) - Sampling_Size__c (Number) - Profile_Frequency__c (Picklist) ``` ### Implementation Patterns #### Batch Processing Pattern For large data volumes: 1. Implement Database.Batchable interface 2. Process objects in chunks 3. Use Database.Stateful for aggregation 4. Handle governor limits 5. Store results incrementally #### Sampling Pattern For performance optimization: 1. Define sample size based on volume 2. Use random sampling for large datasets 3. Ensure statistical significance 4. Extrapolate results 5. Validate sample accuracy #### Real-time Analysis Pattern For immediate insights: 1. Analyze on record save 2. Update quality metrics 3. Flag quality issues 4. Send notifications 5. Update dashboards ### Analysis Algorithms to Implement #### Completeness Analysis ``` For each field: 1. Count total records 2. Count non-null values 3. Calculate: (non-null / total) * 100 4. Flag fields below threshold 5. Generate recommendations ``` #### Duplicate Detection ``` 1. Define matching criteria 2. Generate match keys 3. Group by match keys 4. Identify groups > 1 5. Calculate duplicate percentage 6. Suggest merge strategies ``` #### Pattern Recognition ``` 1. Sample field values 2. Apply regex patterns 3. Calculate match percentages 4. Identify dominant patterns 5. Flag anomalies 6. Suggest standardization ``` ### Reporting Components to Generate #### Data Quality Dashboard Display: - Overall data quality score - Object-level quality metrics - Field completeness heat map - Duplicate record statistics - Trend analysis charts - Top quality issues #### Executive Summary Dashboard Show: - Data volume overview - Quality score trends - Critical issues count - Compliance status - ROI of data quality - Improvement recommendations #### Operational Dashboard Include: - Real-time quality monitoring - Issue detection alerts - Profile execution status - Performance metrics - User data quality scores ### Integration Requirements #### ETL Tool Integration - Informatica connectors - MuleSoft data quality - Talend integration - Jitterbit profiles - Custom API endpoints #### Analytics Integration - Tableau data quality metrics - Einstein Analytics datasets - Power BI connectors - Custom reporting APIs - Real-time streaming #### Data Governance Integration - Collibra integration - Informatica MDM - Custom governance tools - Policy enforcement - Compliance tracking ### Best Practices to Implement 1. **Performance Optimization** - Use selective queries - Implement caching - Batch large operations - Optimize algorithms - Monitor resource usage 2. **Accuracy Enhancement** - Validate profiling results - Cross-reference metrics - Use multiple algorithms - Implement quality checks - Regular calibration 3. **Scalability Design** - Handle millions of records - Distributed processing - Incremental profiling - Resource management - Queue management 4. **Security Measures** - Respect data visibility - Implement encryption - Audit trail logging - Access control - Data masking ### Advanced Features to Consider 1. **Machine Learning Integration** - Anomaly detection models - Quality prediction - Pattern learning - Auto-categorization - Recommendation engine 2. **Automated Remediation** - Data standardization - Duplicate merging - Format correction - Validation rule updates - Workflow triggers 3. **Predictive Analytics** - Quality degradation prediction - Volume growth forecasting - Issue trend analysis - Impact assessment - Resource planning ### Error Handling Instructions Implement error handling for: 1. Governor limit exceptions 2. Timeout scenarios 3. Memory limitations 4. API callout failures 5. Permission errors Recovery strategies: - Checkpoint processing - Partial result saving - Automatic retry logic - Manual intervention - Error notifications ### Testing Requirements Generate test classes that: 1. Test profiling accuracy 2. Verify calculations 3. Test edge cases 4. Validate performance 5. Check error handling ### Output Formats Support multiple formats: - JSON for API integration - CSV for data analysis - PDF for reports - Excel for business users - XML for system integration ### Profiling Metrics Formulas 1. **Data Quality Score** ``` DQS = (C × 0.3) + (U × 0.2) + (V × 0.2) + (A × 0.2) + (T × 0.1) Where: C = Completeness, U = Uniqueness, V = Validity A = Accuracy, T = Timeliness ``` 2. **Field Completeness** ``` Completeness = (PopulatedRecords / TotalRecords) × 100 ``` 3. **Duplicate Rate** ``` DuplicateRate = (DuplicateRecords / TotalRecords) × 100 ```