sf-agent-framework
Version:
AI Agent Orchestration Framework for Salesforce Development - Two-phase architecture with 70% context reduction
385 lines (280 loc) • 9.52 kB
Markdown
# Salesforce Data Quality Standards
## Overview
Data quality standards ensure that Salesforce data is accurate, complete,
consistent, and fit for its intended use, enabling reliable business decisions
and operations.
## Data Quality Dimensions
### Accuracy
**Definition**: Data correctly represents real-world entities and events
**Standards**:
- Email addresses follow valid format
- Phone numbers include correct digits
- Addresses validated against postal databases
- Dates within reasonable ranges
- Numeric values within expected bounds
**Measurement**:
- Error rate per field
- Validation rule failures
- Data verification audits
- User-reported inaccuracies
### Completeness
**Definition**: All required data is present
**Standards**:
- Mandatory fields always populated
- Key business fields >95% complete
- Related records properly linked
- No orphaned records
- Historical data preserved
**Measurement**:
- Field population percentage
- Required field compliance
- Relationship integrity
- Missing data reports
### Consistency
**Definition**: Data is uniform across the system
**Standards**:
- Same format for similar data types
- Standardized picklist values
- Consistent naming conventions
- Uniform date/time formats
- Matching data across objects
**Measurement**:
- Format compliance rate
- Cross-object data matching
- Duplicate detection rate
- Standardization scores
### Timeliness
**Definition**: Data is current and available when needed
**Standards**:
- Real-time updates for critical data
- Batch updates within SLA
- Last modified dates tracked
- Stale data flagged
- Timely synchronization
**Measurement**:
- Data age analysis
- Update frequency
- Synchronization lag
- SLA compliance
### Uniqueness
**Definition**: No unwanted duplicates exist
**Standards**:
- Unique identifiers enforced
- Duplicate rules active
- Matching rules configured
- Merge procedures defined
- Master record designation
**Measurement**:
- Duplicate rate
- Merge frequency
- Unique constraint violations
- Matching rule effectiveness
### Validity
**Definition**: Data conforms to defined formats and business rules
**Standards**:
- Field formats enforced
- Business rules validated
- Referential integrity maintained
- Value ranges respected
- Conditional logic applied
**Measurement**:
- Validation rule pass rate
- Format compliance
- Business rule violations
- Constraint adherence
## Data Standards by Object Type
### Account Standards
- **Naming Convention**: Legal entity name, no abbreviations
- **Required Fields**: Name, Type, Industry, Owner
- **Address Format**: Complete postal address
- **Phone Format**: +1 (XXX) XXX-XXXX
- **Website**: Valid URL with protocol
- **Hierarchy**: Parent account relationships
- **Duplicates**: Checked by name and domain
### Contact Standards
- **Name Format**: First Name, Last Name (no nicknames)
- **Email**: Valid format, verified domain
- **Phone**: Primary number required
- **Title**: Standardized job titles
- **Account**: Must be associated
- **Status**: Active/Inactive tracking
- **Duplicates**: Email and name matching
### Opportunity Standards
- **Naming**: Account - Product - Year
- **Amount**: Required, positive values
- **Close Date**: Future date for open opps
- **Stage**: Valid progression only
- **Probability**: Auto-calculated by stage
- **Products**: Line items for won opps
- **Competition**: Tracked for analysis
### Case Standards
- **Subject**: Clear, descriptive title
- **Priority**: Based on SLA rules
- **Status**: Proper lifecycle flow
- **Owner**: No unassigned cases
- **Contact**: Associated customer
- **Description**: Minimum 50 characters
- **Resolution**: Required for closed cases
### Lead Standards
- **Source**: Always populated
- **Status**: Regular progression
- **Rating**: Based on scoring model
- **Company**: No personal emails
- **Conversion**: Mapped fields defined
- **Assignment**: Automated rules
- **Duplicates**: Email and company check
## Data Entry Standards
### Field-Level Standards
- **Text Fields**: Proper capitalization
- **Picklists**: No "Other" without description
- **Multi-Select**: Maximum selections defined
- **Currency**: Correct currency code
- **Percentages**: 0-100 range
- **URLs**: Include protocol
- **Lookups**: Valid relationships only
### Naming Conventions
- **Accounts**: Legal name, suffix (Inc., LLC)
- **Contacts**: Formal names, titles
- **Opportunities**: Descriptive, searchable
- **Campaigns**: Program - Type - Date
- **Cases**: Issue - Product - Severity
- **Products**: SKU - Name - Version
### Address Standards
- **Format**: Consistent across records
- **Validation**: Postal service verification
- **Geocoding**: Latitude/longitude for mapping
- **Billing/Shipping**: Both when applicable
- **Country**: ISO codes used
- **State/Province**: Standard abbreviations
## Data Validation Rules
### Validation Rule Categories
- **Format Validation**: Email, phone, URL
- **Range Validation**: Dates, numbers
- **Conditional Validation**: Based on other fields
- **Cross-Object Validation**: Related data
- **Business Rule Validation**: Process requirements
### Common Validation Patterns
```
// Email validation
REGEX(Email, "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")
// Phone validation (US)
REGEX(Phone, "^\+?1?[-.]?\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]{4})$")
// Required field combination
OR(
ISBLANK(Field1__c),
ISBLANK(Field2__c)
)
// Date range validation
CloseDate > TODAY() && CloseDate < TODAY() + 365
// Conditional requirement
AND(
ISPICKVAL(Type, "Customer"),
ISBLANK(Contract_Date__c)
)
```
## Data Governance
### Data Stewardship
- **Data Owner**: Business accountability
- **Data Steward**: Operational responsibility
- **Quality Monitor**: Regular audits
- **Process Owner**: Workflow maintenance
- **Technical Support**: System administration
### Quality Processes
- **Initial Load**: Cleansing before import
- **Ongoing Entry**: Validation at creation
- **Batch Updates**: Quality checks
- **Integration**: Error handling
- **Periodic Review**: Scheduled audits
### Data Quality Tools
- **Duplicate Management**: Native Salesforce
- **Data Loader**: Batch operations
- **DemandTools**: Advanced cleansing
- **Cloudingo**: Deduplication
- **Data.com**: Third-party enrichment
## Monitoring and Measurement
### Quality Metrics
- **Completeness Score**: % fields populated
- **Accuracy Rate**: Validated data percentage
- **Duplicate Rate**: Duplicate records found
- **Timeliness**: Data age distribution
- **Compliance Rate**: Standards adherence
### Quality Dashboards
- **Executive Dashboard**: Overall health
- **Object Scorecards**: Per-object quality
- **Trend Analysis**: Quality over time
- **User Metrics**: Quality by creator
- **Process Metrics**: Workflow effectiveness
### Audit Procedures
- **Scheduled Reviews**: Monthly/quarterly
- **Sample Testing**: Statistical sampling
- **Full Scans**: Periodic complete review
- **Exception Reports**: Anomaly detection
- **User Feedback**: Quality issue reporting
## Data Cleansing
### Cleansing Strategies
- **Standardization**: Format consistency
- **Deduplication**: Merge duplicates
- **Enrichment**: Add missing data
- **Validation**: Verify accuracy
- **Archival**: Remove obsolete data
### Cleansing Process
1. **Assessment**: Current state analysis
2. **Planning**: Cleansing approach
3. **Backup**: Data preservation
4. **Execution**: Cleansing operations
5. **Validation**: Quality verification
6. **Documentation**: Changes recorded
### Common Cleansing Tasks
- Remove duplicate records
- Standardize company names
- Fix phone number formats
- Validate email addresses
- Complete missing fields
- Update outdated information
- Correct data relationships
- Archive old records
## Integration Data Quality
### Integration Standards
- **Field Mapping**: Documented and validated
- **Data Transformation**: Consistent rules
- **Error Handling**: Graceful failures
- **Sync Validation**: Bi-directional accuracy
- **Conflict Resolution**: Clear precedence
### API Data Standards
- **Required Fields**: Enforced in API
- **Format Validation**: Pre-submission
- **Bulk Operations**: Quality preserved
- **Error Reporting**: Detailed messages
- **Retry Logic**: Transient failure handling
## Best Practices
### Prevention Strategies
1. **User Training**: Proper data entry
2. **Validation Rules**: Enforce at entry
3. **Page Layouts**: Guide users
4. **Automation**: Reduce manual entry
5. **Integration**: Single source of truth
### Quality Culture
1. **Executive Support**: Leadership commitment
2. **Clear Standards**: Documented rules
3. **Regular Training**: Ongoing education
4. **Accountability**: Quality ownership
5. **Recognition**: Quality achievements
### Continuous Improvement
1. **Regular Monitoring**: Track metrics
2. **Root Cause Analysis**: Understand issues
3. **Process Enhancement**: Improve workflows
4. **Tool Optimization**: Better technology
5. **Feedback Integration**: User input
## Compliance Considerations
### Regulatory Requirements
- **GDPR**: Data accuracy and consent
- **CCPA**: Consumer data rights
- **HIPAA**: Healthcare data standards
- **SOX**: Financial data integrity
- **Industry**: Specific regulations
### Compliance Standards
- **Audit Trail**: Change tracking
- **Data Retention**: Defined periods
- **Access Control**: Appropriate permissions
- **Encryption**: Sensitive data protection
- **Reporting**: Compliance documentation