serverless-spy
Version:
CDK-based library for writing elegant integration tests on AWS serverless architecture and an additional web console to monitor events in real time.
448 lines (352 loc) • 9.44 kB
JavaScript
/**
* Mnemonist KDTree
* =================
*
* Low-level JavaScript implementation of a k-dimensional tree.
*/
var iterables = require('./utils/iterables.js');
var typed = require('./utils/typed-arrays.js');
var createTupleComparator = require('./utils/comparators.js').createTupleComparator;
var FixedReverseHeap = require('./fixed-reverse-heap.js');
var inplaceQuickSortIndices = require('./sort/quick.js').inplaceQuickSortIndices;
/**
* Helper function used to compute the squared distance between a query point
* and an indexed points whose values are stored in a tree's axes.
*
* Note that squared distance is used instead of euclidean to avoid
* costly sqrt computations.
*
* @param {number} dimensions - Number of dimensions.
* @param {array} axes - Axes data.
* @param {number} pivot - Pivot.
* @param {array} point - Query point.
* @return {number}
*/
function squaredDistanceAxes(dimensions, axes, pivot, b) {
var d;
var dist = 0,
step;
for (d = 0; d < dimensions; d++) {
step = axes[d][pivot] - b[d];
dist += step * step;
}
return dist;
}
/**
* Helper function used to reshape input data into low-level axes data.
*
* @param {number} dimensions - Number of dimensions.
* @param {array} data - Data in the shape [label, [x, y, z...]]
* @return {object}
*/
function reshapeIntoAxes(dimensions, data) {
var l = data.length;
var axes = new Array(dimensions),
labels = new Array(l),
axis;
var PointerArray = typed.getPointerArray(l);
var ids = new PointerArray(l);
var d, i, row;
var f = true;
for (d = 0; d < dimensions; d++) {
axis = new Float64Array(l);
for (i = 0; i < l; i++) {
row = data[i];
axis[i] = row[1][d];
if (f) {
labels[i] = row[0];
ids[i] = i;
}
}
f = false;
axes[d] = axis;
}
return {axes: axes, ids: ids, labels: labels};
}
/**
* Helper function used to build a kd-tree from axes data.
*
* @param {number} dimensions - Number of dimensions.
* @param {array} axes - Axes.
* @param {array} ids - Indices to sort.
* @param {array} labels - Point labels.
* @return {object}
*/
function buildTree(dimensions, axes, ids, labels) {
var l = labels.length;
// NOTE: +1 because we need to keep 0 as null pointer
var PointerArray = typed.getPointerArray(l + 1);
// Building the tree
var pivots = new PointerArray(l),
lefts = new PointerArray(l),
rights = new PointerArray(l);
var stack = [[0, 0, ids.length, -1, 0]],
step,
parent,
direction,
median,
pivot,
lo,
hi;
var d, i = 0;
while (stack.length !== 0) {
step = stack.pop();
d = step[0];
lo = step[1];
hi = step[2];
parent = step[3];
direction = step[4];
inplaceQuickSortIndices(axes[d], ids, lo, hi);
l = hi - lo;
median = lo + (l >>> 1); // Fancy floor(l / 2)
pivot = ids[median];
pivots[i] = pivot;
if (parent > -1) {
if (direction === 0)
lefts[parent] = i + 1;
else
rights[parent] = i + 1;
}
d = (d + 1) % dimensions;
// Right
if (median !== lo && median !== hi - 1) {
stack.push([d, median + 1, hi, i, 1]);
}
// Left
if (median !== lo) {
stack.push([d, lo, median, i, 0]);
}
i++;
}
return {
axes: axes,
labels: labels,
pivots: pivots,
lefts: lefts,
rights: rights
};
}
/**
* KDTree.
*
* @constructor
*/
function KDTree(dimensions, build) {
this.dimensions = dimensions;
this.visited = 0;
this.axes = build.axes;
this.labels = build.labels;
this.pivots = build.pivots;
this.lefts = build.lefts;
this.rights = build.rights;
this.size = this.labels.length;
}
/**
* Method returning the query's nearest neighbor.
*
* @param {array} query - Query point.
* @return {any}
*/
KDTree.prototype.nearestNeighbor = function(query) {
var bestDistance = Infinity,
best = null;
var dimensions = this.dimensions,
axes = this.axes,
pivots = this.pivots,
lefts = this.lefts,
rights = this.rights;
var visited = 0;
function recurse(d, node) {
visited++;
var left = lefts[node],
right = rights[node],
pivot = pivots[node];
var dist = squaredDistanceAxes(
dimensions,
axes,
pivot,
query
);
if (dist < bestDistance) {
best = pivot;
bestDistance = dist;
if (dist === 0)
return;
}
var dx = axes[d][pivot] - query[d];
d = (d + 1) % dimensions;
// Going the correct way?
if (dx > 0) {
if (left !== 0)
recurse(d, left - 1);
}
else {
if (right !== 0)
recurse(d, right - 1);
}
// Going the other way?
if (dx * dx < bestDistance) {
if (dx > 0) {
if (right !== 0)
recurse(d, right - 1);
}
else {
if (left !== 0)
recurse(d, left - 1);
}
}
}
recurse(0, 0);
this.visited = visited;
return this.labels[best];
};
var KNN_HEAP_COMPARATOR_3 = createTupleComparator(3);
var KNN_HEAP_COMPARATOR_2 = createTupleComparator(2);
/**
* Method returning the query's k nearest neighbors.
*
* @param {number} k - Number of nearest neighbor to retrieve.
* @param {array} query - Query point.
* @return {array}
*/
// TODO: can do better by improving upon static-kdtree here
KDTree.prototype.kNearestNeighbors = function(k, query) {
if (k <= 0)
throw new Error('mnemonist/kd-tree.kNearestNeighbors: k should be a positive number.');
k = Math.min(k, this.size);
if (k === 1)
return [this.nearestNeighbor(query)];
var heap = new FixedReverseHeap(Array, KNN_HEAP_COMPARATOR_3, k);
var dimensions = this.dimensions,
axes = this.axes,
pivots = this.pivots,
lefts = this.lefts,
rights = this.rights;
var visited = 0;
function recurse(d, node) {
var left = lefts[node],
right = rights[node],
pivot = pivots[node];
var dist = squaredDistanceAxes(
dimensions,
axes,
pivot,
query
);
heap.push([dist, visited++, pivot]);
var point = query[d],
split = axes[d][pivot],
dx = point - split;
d = (d + 1) % dimensions;
// Going the correct way?
if (point < split) {
if (left !== 0) {
recurse(d, left - 1);
}
}
else {
if (right !== 0) {
recurse(d, right - 1);
}
}
// Going the other way?
if (dx * dx < heap.peek()[0] || heap.size < k) {
if (point < split) {
if (right !== 0) {
recurse(d, right - 1);
}
}
else {
if (left !== 0) {
recurse(d, left - 1);
}
}
}
}
recurse(0, 0);
this.visited = visited;
var best = heap.consume();
for (var i = 0; i < best.length; i++)
best[i] = this.labels[best[i][2]];
return best;
};
/**
* Method returning the query's k nearest neighbors by linear search.
*
* @param {number} k - Number of nearest neighbor to retrieve.
* @param {array} query - Query point.
* @return {array}
*/
KDTree.prototype.linearKNearestNeighbors = function(k, query) {
if (k <= 0)
throw new Error('mnemonist/kd-tree.kNearestNeighbors: k should be a positive number.');
k = Math.min(k, this.size);
var heap = new FixedReverseHeap(Array, KNN_HEAP_COMPARATOR_2, k);
var i, l, dist;
for (i = 0, l = this.size; i < l; i++) {
dist = squaredDistanceAxes(
this.dimensions,
this.axes,
this.pivots[i],
query
);
heap.push([dist, i]);
}
var best = heap.consume();
for (i = 0; i < best.length; i++)
best[i] = this.labels[this.pivots[best[i][1]]];
return best;
};
/**
* Convenience known methods.
*/
KDTree.prototype.inspect = function() {
var dummy = new Map();
dummy.dimensions = this.dimensions;
Object.defineProperty(dummy, 'constructor', {
value: KDTree,
enumerable: false
});
var i, j, point;
for (i = 0; i < this.size; i++) {
point = new Array(this.dimensions);
for (j = 0; j < this.dimensions; j++)
point[j] = this.axes[j][i];
dummy.set(this.labels[i], point);
}
return dummy;
};
if (typeof Symbol !== 'undefined')
KDTree.prototype[Symbol.for('nodejs.util.inspect.custom')] = KDTree.prototype.inspect;
/**
* Static @.from function taking an arbitrary iterable & converting it into
* a structure.
*
* @param {Iterable} iterable - Target iterable.
* @param {number} dimensions - Space dimensions.
* @return {KDTree}
*/
KDTree.from = function(iterable, dimensions) {
var data = iterables.toArray(iterable);
var reshaped = reshapeIntoAxes(dimensions, data);
var result = buildTree(dimensions, reshaped.axes, reshaped.ids, reshaped.labels);
return new KDTree(dimensions, result);
};
/**
* Static @.from function building a KDTree from given axes.
*
* @param {Iterable} iterable - Target iterable.
* @param {number} dimensions - Space dimensions.
* @return {KDTree}
*/
KDTree.fromAxes = function(axes, labels) {
if (!labels)
labels = typed.indices(axes[0].length);
var dimensions = axes.length;
var result = buildTree(axes.length, axes, typed.indices(labels.length), labels);
return new KDTree(dimensions, result);
};
/**
* Exporting.
*/
module.exports = KDTree;