UNPKG

semantic-ds-toolkit

Version:

Performance-first semantic layer for modern data stacks - Stable Column Anchors & intelligent inference

50 lines 1.86 kB
import { StableColumnAnchor, ColumnData, ColumnFingerprint } from '../types/anchor.types'; /** * Example usage of the drift detection system * This demonstrates how to use the various components for semantic drift detection */ declare const historicalAnchor: StableColumnAnchor; declare const currentColumn: ColumnData; declare const currentFingerprint: ColumnFingerprint; /** * Example 1: Basic drift detection */ export declare function basicDriftDetectionExample(): Promise<import("./drift-detector").DriftDetectionResult>; /** * Example 2: Performance-optimized drift detection for large datasets */ export declare function performanceOptimizedExample(): Promise<import("./drift-detector").DriftDetectionResult>; /** * Example 3: Batch processing multiple columns */ export declare function batchProcessingExample(): Promise<import("./drift-detector").DriftDetectionResult[]>; /** * Example 4: Performance benchmarking */ export declare function performanceBenchmarkExample(): Promise<Record<number, { avgTime: number; throughput: number; }>>; /** * Example 5: Statistical tests demonstration */ export declare function statisticalTestsExample(): Promise<{ ksResult: import("./statistical-tests").KolmogorovSmirnovResult; psiScore: number; comparison: { ks_test: import("./statistical-tests").KolmogorovSmirnovResult; psi_analysis?: import("./statistical-tests").PopulationStabilityResult; wasserstein_distance?: number; summary: { drift_detected: boolean; severity: "none" | "low" | "medium" | "high"; primary_indicator: string; }; }; }>; /** * Run all examples */ export declare function runAllExamples(): Promise<void>; export { historicalAnchor, currentColumn, currentFingerprint }; //# sourceMappingURL=drift-detection.example.d.ts.map