UNPKG

semantic-ds-toolkit

Version:

Performance-first semantic layer for modern data stacks - Stable Column Anchors & intelligent inference

424 lines • 19.3 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.ShadowSystemBenchmark = void 0; exports.runShadowSystemBenchmark = runShadowSystemBenchmark; exports.generateBenchmarkReport = generateBenchmarkReport; const perf_hooks_1 = require("perf_hooks"); const shadow_semantics_1 = require("../core/shadow-semantics"); const reconciler_1 = require("../core/reconciler"); const attachment_api_1 = require("../core/attachment-api"); class ShadowSystemBenchmark { shadowLayer; reconciler; constructor(options) { this.shadowLayer = new shadow_semantics_1.ShadowSemanticsLayer(options); this.reconciler = new reconciler_1.SmartAnchorReconciler(); } async runComprehensiveBenchmark() { const suiteStartTime = perf_hooks_1.performance.now(); const results = []; console.log('šŸš€ Starting Shadow Semantics Performance Benchmark Suite'); results.push(await this.benchmarkBasicAttachment()); results.push(await this.benchmarkLargeDataset()); results.push(await this.benchmarkComplexReconciliation()); results.push(await this.benchmarkMemoryEfficiency()); results.push(await this.benchmarkConcurrentOperations()); results.push(await this.benchmarkScalability()); const totalTime = perf_hooks_1.performance.now() - suiteStartTime; const summary = this.calculateSummary(results); return { suite_name: 'Shadow Semantics Comprehensive Benchmark', total_execution_time_ms: totalTime, results: results, summary: summary }; } async benchmarkBasicAttachment() { console.log(' šŸ“Š Benchmarking basic semantic attachment...'); const testDataFrame = this.generateTestDataFrame(1000, 10); const startTime = perf_hooks_1.performance.now(); const startMemory = this.getMemoryUsage(); const result = (0, attachment_api_1.attachSemanticsShadow)(testDataFrame, { confidence_threshold: 0.8, reconciliation_strategy: 'balanced' }); const endTime = perf_hooks_1.performance.now(); const endMemory = this.getMemoryUsage(); const executionTime = endTime - startTime; return { operation: 'basic_attachment', execution_time_ms: executionTime, memory_usage_mb: endMemory - startMemory, throughput: { columns_per_second: testDataFrame.columns.length / (executionTime / 1000), rows_per_second: testDataFrame.shape[0] / (executionTime / 1000) }, accuracy_metrics: this.calculateAccuracyMetrics(result.semantic_attachments, 0.8), scalability_metrics: { dataset_size: testDataFrame.shape[0], column_count: testDataFrame.columns.length, performance_degradation: 0 } }; } async benchmarkLargeDataset() { console.log(' šŸ“ˆ Benchmarking large dataset performance...'); const testDataFrame = this.generateTestDataFrame(100000, 50); const startTime = perf_hooks_1.performance.now(); const startMemory = this.getMemoryUsage(); const result = (0, attachment_api_1.attachSemanticsShadow)(testDataFrame, { confidence_threshold: 0.75, reconciliation_strategy: 'balanced' }); const endTime = perf_hooks_1.performance.now(); const endMemory = this.getMemoryUsage(); const executionTime = endTime - startTime; return { operation: 'large_dataset', execution_time_ms: executionTime, memory_usage_mb: endMemory - startMemory, throughput: { columns_per_second: testDataFrame.columns.length / (executionTime / 1000), rows_per_second: testDataFrame.shape[0] / (executionTime / 1000) }, accuracy_metrics: this.calculateAccuracyMetrics(result.semantic_attachments, 0.75), scalability_metrics: { dataset_size: testDataFrame.shape[0], column_count: testDataFrame.columns.length, performance_degradation: 0 } }; } async benchmarkComplexReconciliation() { console.log(' šŸ”„ Benchmarking complex reconciliation scenarios...'); const newColumns = this.generateTestColumns(25); const existingAnchors = this.generateTestAnchors(30); const startTime = perf_hooks_1.performance.now(); const startMemory = this.getMemoryUsage(); const result = (0, attachment_api_1.reconcileAnchors)('benchmark_dataset', newColumns, existingAnchors, { strategy: 'aggressive', confidence_threshold: 0.7, drift_tolerance: 0.3 }); const endTime = perf_hooks_1.performance.now(); const endMemory = this.getMemoryUsage(); const executionTime = endTime - startTime; return { operation: 'complex_reconciliation', execution_time_ms: executionTime, memory_usage_mb: endMemory - startMemory, throughput: { columns_per_second: newColumns.length / (executionTime / 1000), rows_per_second: 0 }, accuracy_metrics: { confidence_threshold: 0.7, high_confidence_matches: result.reconciliation_result.matched_anchors.filter(m => m.confidence >= 0.9).length, low_confidence_matches: result.reconciliation_result.matched_anchors.filter(m => m.confidence < 0.9).length, false_positives: 0, false_negatives: 0 }, scalability_metrics: { dataset_size: 0, column_count: newColumns.length, performance_degradation: 0 } }; } async benchmarkMemoryEfficiency() { console.log(' šŸ’¾ Benchmarking memory efficiency...'); const iterations = 10; let totalTime = 0; let peakMemory = 0; let totalColumns = 0; for (let i = 0; i < iterations; i++) { const testDataFrame = this.generateTestDataFrame(5000, 20); const startTime = perf_hooks_1.performance.now(); const startMemory = this.getMemoryUsage(); (0, attachment_api_1.attachSemanticsShadow)(testDataFrame, { confidence_threshold: 0.8, shadow_options: { enable_caching: false } }); const endTime = perf_hooks_1.performance.now(); const endMemory = this.getMemoryUsage(); totalTime += (endTime - startTime); peakMemory = Math.max(peakMemory, endMemory - startMemory); totalColumns += testDataFrame.columns.length; if (global.gc) { global.gc(); } } return { operation: 'memory_efficiency', execution_time_ms: totalTime, memory_usage_mb: peakMemory, throughput: { columns_per_second: totalColumns / (totalTime / 1000), rows_per_second: 0 }, accuracy_metrics: { confidence_threshold: 0.8, high_confidence_matches: 0, low_confidence_matches: 0, false_positives: 0, false_negatives: 0 }, scalability_metrics: { dataset_size: 5000 * iterations, column_count: totalColumns, performance_degradation: 0 } }; } async benchmarkConcurrentOperations() { console.log(' ⚔ Benchmarking concurrent operations...'); const testDataFrames = Array.from({ length: 5 }, () => this.generateTestDataFrame(2000, 15)); const startTime = perf_hooks_1.performance.now(); const startMemory = this.getMemoryUsage(); const promises = testDataFrames.map(df => (0, attachment_api_1.attachSemanticsShadow)(df, { confidence_threshold: 0.8, reconciliation_strategy: 'balanced' })); const results = await Promise.all(promises); const endTime = perf_hooks_1.performance.now(); const endMemory = this.getMemoryUsage(); const executionTime = endTime - startTime; const totalColumns = testDataFrames.reduce((sum, df) => sum + df.columns.length, 0); const totalRows = testDataFrames.reduce((sum, df) => sum + df.shape[0], 0); return { operation: 'concurrent_operations', execution_time_ms: executionTime, memory_usage_mb: endMemory - startMemory, throughput: { columns_per_second: totalColumns / (executionTime / 1000), rows_per_second: totalRows / (executionTime / 1000) }, accuracy_metrics: { confidence_threshold: 0.8, high_confidence_matches: results.reduce((sum, r) => sum + r.semantic_attachments.filter(a => a.confidence_score >= 0.9).length, 0), low_confidence_matches: results.reduce((sum, r) => sum + r.semantic_attachments.filter(a => a.confidence_score < 0.9).length, 0), false_positives: 0, false_negatives: 0 }, scalability_metrics: { dataset_size: totalRows, column_count: totalColumns, performance_degradation: 0 } }; } async benchmarkScalability() { console.log(' šŸ“ Benchmarking scalability characteristics...'); const baseSizes = [ { rows: 1000, cols: 5 }, { rows: 10000, cols: 15 }, { rows: 50000, cols: 30 }, { rows: 100000, cols: 50 } ]; let baselineTime = 0; let currentTime = 0; let totalColumns = 0; let totalRows = 0; for (let i = 0; i < baseSizes.length; i++) { const { rows, cols } = baseSizes[i]; const testDataFrame = this.generateTestDataFrame(rows, cols); const startTime = perf_hooks_1.performance.now(); (0, attachment_api_1.attachSemanticsShadow)(testDataFrame, { confidence_threshold: 0.8 }); const endTime = perf_hooks_1.performance.now(); const executionTime = endTime - startTime; if (i === 0) { baselineTime = executionTime; } currentTime = executionTime; totalColumns += cols; totalRows += rows; } const performanceDegradation = baselineTime > 0 ? (currentTime / baselineTime) : 1; return { operation: 'scalability_analysis', execution_time_ms: currentTime, memory_usage_mb: this.getMemoryUsage(), throughput: { columns_per_second: totalColumns / (currentTime / 1000), rows_per_second: totalRows / (currentTime / 1000) }, accuracy_metrics: { confidence_threshold: 0.8, high_confidence_matches: 0, low_confidence_matches: 0, false_positives: 0, false_negatives: 0 }, scalability_metrics: { dataset_size: totalRows, column_count: totalColumns, performance_degradation: performanceDegradation } }; } generateTestDataFrame(rows, cols) { const columns = []; const dtypes = {}; const data = {}; const columnTypes = ['id', 'name', 'email', 'amount', 'date', 'status', 'code', 'value']; for (let i = 0; i < cols; i++) { const colType = columnTypes[i % columnTypes.length]; const colName = `${colType}_${i}`; columns.push(colName); switch (colType) { case 'id': dtypes[colName] = 'int64'; data[colName] = Array.from({ length: rows }, (_, idx) => idx + 1); break; case 'name': dtypes[colName] = 'string'; data[colName] = Array.from({ length: rows }, (_, idx) => `Name_${idx}`); break; case 'email': dtypes[colName] = 'string'; data[colName] = Array.from({ length: rows }, (_, idx) => `user${idx}@example.com`); break; case 'amount': dtypes[colName] = 'float64'; data[colName] = Array.from({ length: rows }, () => Math.random() * 1000); break; case 'date': dtypes[colName] = 'datetime'; data[colName] = Array.from({ length: rows }, () => new Date(Date.now() - Math.random() * 365 * 24 * 60 * 60 * 1000).toISOString()); break; default: dtypes[colName] = 'string'; data[colName] = Array.from({ length: rows }, (_, idx) => `Value_${idx}`); } } return { columns: columns, dtypes: dtypes, shape: [rows, cols], sample: (n = 100) => { const result = {}; for (const col of columns) { result[col] = data[col].slice(0, n); } return result; }, getColumn: (name) => data[name] || [] }; } generateTestColumns(count) { const columns = []; const types = ['string', 'int64', 'float64', 'boolean', 'datetime']; for (let i = 0; i < count; i++) { const dataType = types[i % types.length]; let values; switch (dataType) { case 'int64': values = Array.from({ length: 100 }, (_, idx) => idx); break; case 'float64': values = Array.from({ length: 100 }, () => Math.random() * 1000); break; case 'boolean': values = Array.from({ length: 100 }, () => Math.random() > 0.5); break; case 'datetime': values = Array.from({ length: 100 }, () => new Date().toISOString()); break; default: values = Array.from({ length: 100 }, (_, idx) => `Value_${idx}`); } columns.push({ name: `test_column_${i}`, values: values, data_type: dataType }); } return columns; } generateTestAnchors(count) { const anchors = []; for (let i = 0; i < count; i++) { anchors.push({ dataset: 'test_dataset', column_name: `anchor_column_${i}`, anchor_id: `anchor_${i}`, fingerprint: `dtype=string;card=100;null_ratio=0.000;unique_ratio=0.900`, first_seen: '2024-01-01', last_seen: '2024-01-01', confidence: 0.8 + Math.random() * 0.2 }); } return anchors; } calculateAccuracyMetrics(attachments, threshold) { const highConfidence = attachments.filter(a => a.confidence_score >= 0.9).length; const lowConfidence = attachments.filter(a => a.confidence_score < 0.9 && a.confidence_score >= threshold).length; return { confidence_threshold: threshold, high_confidence_matches: highConfidence, low_confidence_matches: lowConfidence, false_positives: 0, false_negatives: 0 }; } calculateSummary(results) { const totalColumns = results.reduce((sum, r) => sum + r.scalability_metrics.column_count, 0); const totalTime = results.reduce((sum, r) => sum + r.execution_time_ms, 0); const totalMemory = results.reduce((sum, r) => sum + r.memory_usage_mb, 0); const confidenceResults = results.filter(r => r.accuracy_metrics.high_confidence_matches > 0); const avgConfidence = confidenceResults.length > 0 ? confidenceResults.reduce((sum, r) => sum + (r.accuracy_metrics.high_confidence_matches / (r.accuracy_metrics.high_confidence_matches + r.accuracy_metrics.low_confidence_matches || 1)), 0) / confidenceResults.length : 0; return { average_confidence: avgConfidence, total_columns_processed: totalColumns, overall_throughput: totalColumns / (totalTime / 1000), memory_efficiency: totalColumns / Math.max(totalMemory, 1) }; } getMemoryUsage() { if (typeof process !== 'undefined' && process.memoryUsage) { return process.memoryUsage().heapUsed / 1024 / 1024; } return 0; } generateReport(benchmarkSuite) { let report = `\nšŸ“Š Shadow Semantics Performance Report\n`; report += `${'='.repeat(50)}\n\n`; report += `Suite: ${benchmarkSuite.suite_name}\n`; report += `Total Execution Time: ${benchmarkSuite.total_execution_time_ms.toFixed(2)}ms\n`; report += `Overall Throughput: ${benchmarkSuite.summary.overall_throughput.toFixed(2)} columns/sec\n`; report += `Memory Efficiency: ${benchmarkSuite.summary.memory_efficiency.toFixed(2)} columns/MB\n`; report += `Average Confidence: ${(benchmarkSuite.summary.average_confidence * 100).toFixed(1)}%\n\n`; report += `Individual Benchmark Results:\n`; report += `${'-'.repeat(30)}\n`; for (const result of benchmarkSuite.results) { report += `\n${result.operation.replace(/_/g, ' ').toUpperCase()}\n`; report += ` Execution Time: ${result.execution_time_ms.toFixed(2)}ms\n`; report += ` Memory Usage: ${result.memory_usage_mb.toFixed(2)}MB\n`; report += ` Throughput: ${result.throughput.columns_per_second.toFixed(2)} cols/sec\n`; if (result.accuracy_metrics.high_confidence_matches > 0) { report += ` High Confidence Matches: ${result.accuracy_metrics.high_confidence_matches}\n`; report += ` Low Confidence Matches: ${result.accuracy_metrics.low_confidence_matches}\n`; } if (result.scalability_metrics.performance_degradation > 1) { report += ` Performance Degradation: ${result.scalability_metrics.performance_degradation.toFixed(2)}x\n`; } } report += `\n${('='.repeat(50))}\n`; return report; } } exports.ShadowSystemBenchmark = ShadowSystemBenchmark; async function runShadowSystemBenchmark(options) { const benchmark = new ShadowSystemBenchmark(options); return await benchmark.runComprehensiveBenchmark(); } function generateBenchmarkReport(benchmarkSuite) { const benchmark = new ShadowSystemBenchmark(); return benchmark.generateReport(benchmarkSuite); } //# sourceMappingURL=shadow-performance.js.map