semantic-chunking
Version:
Semantically create chunks from large texts. Useful for workflows involving large language models (LLMs).
69 lines (58 loc) • 2.27 kB
JavaScript
// -----------------------
// -- example-sentenceit.js --
// --------------------------------------------------------------------------------
// this is an example of how to use the sentenceit function
// first we import the sentenceit function
// then we setup the documents array with a text
// then we call the sentenceit function with the text and an options object
// the options object is optional
//
// the cramit function is faster than the chunkit function, but it is less accurate
// useful for quickly chunking text, but not for exact semantic chunking
// --------------------------------------------------------------------------------
import { sentenceit } from '../chunkit.js'; // this is typically just "import { sentenceit } from 'semantic-chunking';", but this is a local test
import fs from 'fs';
import { fileURLToPath } from 'url';
import { dirname, resolve } from 'path';
// Get current file's directory
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
// initialize documents array
let documents = [];
let textFiles = ['example3.txt'].map(file =>
resolve(__dirname, file)
);
// read each text file and add it to the documents array
for (const textFile of textFiles) {
documents.push({
document_name: textFile,
document_text: await fs.promises.readFile(textFile, 'utf8')
});
}
// Get device from command line arguments, default to 'cpu'
const device = process.argv[2] || 'cpu';
// start timing
const startTime = performance.now();
let myTestSentences = await sentenceit(
documents,
{
logging: false,
onnxEmbeddingModel: "Xenova/all-MiniLM-L6-v2",
dtype: 'fp32',
device: device,
localModelPath: "../models",
modelCacheDir: "../models",
returnEmbedding: true,
}
);
// end timeing
const endTime = performance.now();
// calculate tracked time in seconds
let trackedTimeSeconds = (endTime - startTime) / 1000;
trackedTimeSeconds = parseFloat(trackedTimeSeconds.toFixed(2));
console.log("\n\n\n");
console.log("myTestSentences:");
console.log(myTestSentences);
console.log(`device: ${device}`);
console.log("length: " + myTestSentences.length);
console.log("trackedTimeSeconds: " + trackedTimeSeconds);