UNPKG

secure-ls2

Version:

Secure localStorage/sessionStorage data with high level of encryption and data compression

1,489 lines (1,294 loc) 179 kB
/*! * secure-ls2 - v2.1.2 * URL - https://github.com/softvar/secure-ls * * The MIT License (MIT) * * Copyright (c) 2016-2024 Varun Malhotra * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * * Dependencies used - * 1. crypto-js - ^4.2.0 * 2. lz-string - ^1.5.0 */ (function webpackUniversalModuleDefinition(root, factory) { // CommonJS2 if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(); // AMD else if(typeof define === 'function' && define.amd) define([], factory); // CommonJS else if(typeof exports === 'object') exports["SecureLS"] = factory(); // Root else root["SecureLS"] = factory(); })(this, () => { return /******/ (() => { // webpackBootstrap /******/ var __webpack_modules__ = ({ /***/ "./node_modules/crypto-js/aes.js": /*!***************************************!*\ !*** ./node_modules/crypto-js/aes.js ***! \***************************************/ /***/ (function(module, exports, __webpack_require__) { ;(function (root, factory, undef) { if (true) { // CommonJS module.exports = exports = factory(__webpack_require__(/*! ./core */ "./node_modules/crypto-js/core.js"), __webpack_require__(/*! ./enc-base64 */ "./node_modules/crypto-js/enc-base64.js"), __webpack_require__(/*! ./md5 */ "./node_modules/crypto-js/md5.js"), __webpack_require__(/*! ./evpkdf */ "./node_modules/crypto-js/evpkdf.js"), __webpack_require__(/*! ./cipher-core */ "./node_modules/crypto-js/cipher-core.js")); } else // removed by dead control flow {} }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var BlockCipher = C_lib.BlockCipher; var C_algo = C.algo; // Lookup tables var SBOX = []; var INV_SBOX = []; var SUB_MIX_0 = []; var SUB_MIX_1 = []; var SUB_MIX_2 = []; var SUB_MIX_3 = []; var INV_SUB_MIX_0 = []; var INV_SUB_MIX_1 = []; var INV_SUB_MIX_2 = []; var INV_SUB_MIX_3 = []; // Compute lookup tables (function () { // Compute double table var d = []; for (var i = 0; i < 256; i++) { if (i < 128) { d[i] = i << 1; } else { d[i] = (i << 1) ^ 0x11b; } } // Walk GF(2^8) var x = 0; var xi = 0; for (var i = 0; i < 256; i++) { // Compute sbox var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4); sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63; SBOX[x] = sx; INV_SBOX[sx] = x; // Compute multiplication var x2 = d[x]; var x4 = d[x2]; var x8 = d[x4]; // Compute sub bytes, mix columns tables var t = (d[sx] * 0x101) ^ (sx * 0x1010100); SUB_MIX_0[x] = (t << 24) | (t >>> 8); SUB_MIX_1[x] = (t << 16) | (t >>> 16); SUB_MIX_2[x] = (t << 8) | (t >>> 24); SUB_MIX_3[x] = t; // Compute inv sub bytes, inv mix columns tables var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100); INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8); INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16); INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24); INV_SUB_MIX_3[sx] = t; // Compute next counter if (!x) { x = xi = 1; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } }()); // Precomputed Rcon lookup var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]; /** * AES block cipher algorithm. */ var AES = C_algo.AES = BlockCipher.extend({ _doReset: function () { var t; // Skip reset of nRounds has been set before and key did not change if (this._nRounds && this._keyPriorReset === this._key) { return; } // Shortcuts var key = this._keyPriorReset = this._key; var keyWords = key.words; var keySize = key.sigBytes / 4; // Compute number of rounds var nRounds = this._nRounds = keySize + 6; // Compute number of key schedule rows var ksRows = (nRounds + 1) * 4; // Compute key schedule var keySchedule = this._keySchedule = []; for (var ksRow = 0; ksRow < ksRows; ksRow++) { if (ksRow < keySize) { keySchedule[ksRow] = keyWords[ksRow]; } else { t = keySchedule[ksRow - 1]; if (!(ksRow % keySize)) { // Rot word t = (t << 8) | (t >>> 24); // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; // Mix Rcon t ^= RCON[(ksRow / keySize) | 0] << 24; } else if (keySize > 6 && ksRow % keySize == 4) { // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; } keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t; } } // Compute inv key schedule var invKeySchedule = this._invKeySchedule = []; for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) { var ksRow = ksRows - invKsRow; if (invKsRow % 4) { var t = keySchedule[ksRow]; } else { var t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^ INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]]; } } }, encryptBlock: function (M, offset) { this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX); }, decryptBlock: function (M, offset) { // Swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX); // Inv swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; }, _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) { // Shortcut var nRounds = this._nRounds; // Get input, add round key var s0 = M[offset] ^ keySchedule[0]; var s1 = M[offset + 1] ^ keySchedule[1]; var s2 = M[offset + 2] ^ keySchedule[2]; var s3 = M[offset + 3] ^ keySchedule[3]; // Key schedule row counter var ksRow = 4; // Rounds for (var round = 1; round < nRounds; round++) { // Shift rows, sub bytes, mix columns, add round key var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++]; var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++]; var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++]; var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++]; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; } // Shift rows, sub bytes, add round key var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++]; var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++]; var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++]; var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++]; // Set output M[offset] = t0; M[offset + 1] = t1; M[offset + 2] = t2; M[offset + 3] = t3; }, keySize: 256/32 }); /** * Shortcut functions to the cipher's object interface. * * @example * * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg); * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg); */ C.AES = BlockCipher._createHelper(AES); }()); return CryptoJS.AES; })); /***/ }), /***/ "./node_modules/crypto-js/cipher-core.js": /*!***********************************************!*\ !*** ./node_modules/crypto-js/cipher-core.js ***! \***********************************************/ /***/ (function(module, exports, __webpack_require__) { ;(function (root, factory, undef) { if (true) { // CommonJS module.exports = exports = factory(__webpack_require__(/*! ./core */ "./node_modules/crypto-js/core.js"), __webpack_require__(/*! ./evpkdf */ "./node_modules/crypto-js/evpkdf.js")); } else // removed by dead control flow {} }(this, function (CryptoJS) { /** * Cipher core components. */ CryptoJS.lib.Cipher || (function (undefined) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var Base64 = C_enc.Base64; var C_algo = C.algo; var EvpKDF = C_algo.EvpKDF; /** * Abstract base cipher template. * * @property {number} keySize This cipher's key size. Default: 4 (128 bits) * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits) * @property {number} _ENC_XFORM_MODE A constant representing encryption mode. * @property {number} _DEC_XFORM_MODE A constant representing decryption mode. */ var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({ /** * Configuration options. * * @property {WordArray} iv The IV to use for this operation. */ cfg: Base.extend(), /** * Creates this cipher in encryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray }); */ createEncryptor: function (key, cfg) { return this.create(this._ENC_XFORM_MODE, key, cfg); }, /** * Creates this cipher in decryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray }); */ createDecryptor: function (key, cfg) { return this.create(this._DEC_XFORM_MODE, key, cfg); }, /** * Initializes a newly created cipher. * * @param {number} xformMode Either the encryption or decryption transormation mode constant. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @example * * var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray }); */ init: function (xformMode, key, cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Store transform mode and key this._xformMode = xformMode; this._key = key; // Set initial values this.reset(); }, /** * Resets this cipher to its initial state. * * @example * * cipher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-cipher logic this._doReset(); }, /** * Adds data to be encrypted or decrypted. * * @param {WordArray|string} dataUpdate The data to encrypt or decrypt. * * @return {WordArray} The data after processing. * * @example * * var encrypted = cipher.process('data'); * var encrypted = cipher.process(wordArray); */ process: function (dataUpdate) { // Append this._append(dataUpdate); // Process available blocks return this._process(); }, /** * Finalizes the encryption or decryption process. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt. * * @return {WordArray} The data after final processing. * * @example * * var encrypted = cipher.finalize(); * var encrypted = cipher.finalize('data'); * var encrypted = cipher.finalize(wordArray); */ finalize: function (dataUpdate) { // Final data update if (dataUpdate) { this._append(dataUpdate); } // Perform concrete-cipher logic var finalProcessedData = this._doFinalize(); return finalProcessedData; }, keySize: 128/32, ivSize: 128/32, _ENC_XFORM_MODE: 1, _DEC_XFORM_MODE: 2, /** * Creates shortcut functions to a cipher's object interface. * * @param {Cipher} cipher The cipher to create a helper for. * * @return {Object} An object with encrypt and decrypt shortcut functions. * * @static * * @example * * var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES); */ _createHelper: (function () { function selectCipherStrategy(key) { if (typeof key == 'string') { return PasswordBasedCipher; } else { return SerializableCipher; } } return function (cipher) { return { encrypt: function (message, key, cfg) { return selectCipherStrategy(key).encrypt(cipher, message, key, cfg); }, decrypt: function (ciphertext, key, cfg) { return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg); } }; }; }()) }); /** * Abstract base stream cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits) */ var StreamCipher = C_lib.StreamCipher = Cipher.extend({ _doFinalize: function () { // Process partial blocks var finalProcessedBlocks = this._process(!!'flush'); return finalProcessedBlocks; }, blockSize: 1 }); /** * Mode namespace. */ var C_mode = C.mode = {}; /** * Abstract base block cipher mode template. */ var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({ /** * Creates this mode for encryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words); */ createEncryptor: function (cipher, iv) { return this.Encryptor.create(cipher, iv); }, /** * Creates this mode for decryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words); */ createDecryptor: function (cipher, iv) { return this.Decryptor.create(cipher, iv); }, /** * Initializes a newly created mode. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @example * * var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words); */ init: function (cipher, iv) { this._cipher = cipher; this._iv = iv; } }); /** * Cipher Block Chaining mode. */ var CBC = C_mode.CBC = (function () { /** * Abstract base CBC mode. */ var CBC = BlockCipherMode.extend(); /** * CBC encryptor. */ CBC.Encryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // XOR and encrypt xorBlock.call(this, words, offset, blockSize); cipher.encryptBlock(words, offset); // Remember this block to use with next block this._prevBlock = words.slice(offset, offset + blockSize); } }); /** * CBC decryptor. */ CBC.Decryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // Remember this block to use with next block var thisBlock = words.slice(offset, offset + blockSize); // Decrypt and XOR cipher.decryptBlock(words, offset); xorBlock.call(this, words, offset, blockSize); // This block becomes the previous block this._prevBlock = thisBlock; } }); function xorBlock(words, offset, blockSize) { var block; // Shortcut var iv = this._iv; // Choose mixing block if (iv) { block = iv; // Remove IV for subsequent blocks this._iv = undefined; } else { block = this._prevBlock; } // XOR blocks for (var i = 0; i < blockSize; i++) { words[offset + i] ^= block[i]; } } return CBC; }()); /** * Padding namespace. */ var C_pad = C.pad = {}; /** * PKCS #5/7 padding strategy. */ var Pkcs7 = C_pad.Pkcs7 = { /** * Pads data using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to pad. * @param {number} blockSize The multiple that the data should be padded to. * * @static * * @example * * CryptoJS.pad.Pkcs7.pad(wordArray, 4); */ pad: function (data, blockSize) { // Shortcut var blockSizeBytes = blockSize * 4; // Count padding bytes var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes; // Create padding word var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes; // Create padding var paddingWords = []; for (var i = 0; i < nPaddingBytes; i += 4) { paddingWords.push(paddingWord); } var padding = WordArray.create(paddingWords, nPaddingBytes); // Add padding data.concat(padding); }, /** * Unpads data that had been padded using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to unpad. * * @static * * @example * * CryptoJS.pad.Pkcs7.unpad(wordArray); */ unpad: function (data) { // Get number of padding bytes from last byte var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff; // Remove padding data.sigBytes -= nPaddingBytes; } }; /** * Abstract base block cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits) */ var BlockCipher = C_lib.BlockCipher = Cipher.extend({ /** * Configuration options. * * @property {Mode} mode The block mode to use. Default: CBC * @property {Padding} padding The padding strategy to use. Default: Pkcs7 */ cfg: Cipher.cfg.extend({ mode: CBC, padding: Pkcs7 }), reset: function () { var modeCreator; // Reset cipher Cipher.reset.call(this); // Shortcuts var cfg = this.cfg; var iv = cfg.iv; var mode = cfg.mode; // Reset block mode if (this._xformMode == this._ENC_XFORM_MODE) { modeCreator = mode.createEncryptor; } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { modeCreator = mode.createDecryptor; // Keep at least one block in the buffer for unpadding this._minBufferSize = 1; } if (this._mode && this._mode.__creator == modeCreator) { this._mode.init(this, iv && iv.words); } else { this._mode = modeCreator.call(mode, this, iv && iv.words); this._mode.__creator = modeCreator; } }, _doProcessBlock: function (words, offset) { this._mode.processBlock(words, offset); }, _doFinalize: function () { var finalProcessedBlocks; // Shortcut var padding = this.cfg.padding; // Finalize if (this._xformMode == this._ENC_XFORM_MODE) { // Pad data padding.pad(this._data, this.blockSize); // Process final blocks finalProcessedBlocks = this._process(!!'flush'); } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { // Process final blocks finalProcessedBlocks = this._process(!!'flush'); // Unpad data padding.unpad(finalProcessedBlocks); } return finalProcessedBlocks; }, blockSize: 128/32 }); /** * A collection of cipher parameters. * * @property {WordArray} ciphertext The raw ciphertext. * @property {WordArray} key The key to this ciphertext. * @property {WordArray} iv The IV used in the ciphering operation. * @property {WordArray} salt The salt used with a key derivation function. * @property {Cipher} algorithm The cipher algorithm. * @property {Mode} mode The block mode used in the ciphering operation. * @property {Padding} padding The padding scheme used in the ciphering operation. * @property {number} blockSize The block size of the cipher. * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string. */ var CipherParams = C_lib.CipherParams = Base.extend({ /** * Initializes a newly created cipher params object. * * @param {Object} cipherParams An object with any of the possible cipher parameters. * * @example * * var cipherParams = CryptoJS.lib.CipherParams.create({ * ciphertext: ciphertextWordArray, * key: keyWordArray, * iv: ivWordArray, * salt: saltWordArray, * algorithm: CryptoJS.algo.AES, * mode: CryptoJS.mode.CBC, * padding: CryptoJS.pad.PKCS7, * blockSize: 4, * formatter: CryptoJS.format.OpenSSL * }); */ init: function (cipherParams) { this.mixIn(cipherParams); }, /** * Converts this cipher params object to a string. * * @param {Format} formatter (Optional) The formatting strategy to use. * * @return {string} The stringified cipher params. * * @throws Error If neither the formatter nor the default formatter is set. * * @example * * var string = cipherParams + ''; * var string = cipherParams.toString(); * var string = cipherParams.toString(CryptoJS.format.OpenSSL); */ toString: function (formatter) { return (formatter || this.formatter).stringify(this); } }); /** * Format namespace. */ var C_format = C.format = {}; /** * OpenSSL formatting strategy. */ var OpenSSLFormatter = C_format.OpenSSL = { /** * Converts a cipher params object to an OpenSSL-compatible string. * * @param {CipherParams} cipherParams The cipher params object. * * @return {string} The OpenSSL-compatible string. * * @static * * @example * * var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams); */ stringify: function (cipherParams) { var wordArray; // Shortcuts var ciphertext = cipherParams.ciphertext; var salt = cipherParams.salt; // Format if (salt) { wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext); } else { wordArray = ciphertext; } return wordArray.toString(Base64); }, /** * Converts an OpenSSL-compatible string to a cipher params object. * * @param {string} openSSLStr The OpenSSL-compatible string. * * @return {CipherParams} The cipher params object. * * @static * * @example * * var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString); */ parse: function (openSSLStr) { var salt; // Parse base64 var ciphertext = Base64.parse(openSSLStr); // Shortcut var ciphertextWords = ciphertext.words; // Test for salt if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) { // Extract salt salt = WordArray.create(ciphertextWords.slice(2, 4)); // Remove salt from ciphertext ciphertextWords.splice(0, 4); ciphertext.sigBytes -= 16; } return CipherParams.create({ ciphertext: ciphertext, salt: salt }); } }; /** * A cipher wrapper that returns ciphertext as a serializable cipher params object. */ var SerializableCipher = C_lib.SerializableCipher = Base.extend({ /** * Configuration options. * * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL */ cfg: Base.extend({ format: OpenSSLFormatter }), /** * Encrypts a message. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv }); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Encrypt var encryptor = cipher.createEncryptor(key, cfg); var ciphertext = encryptor.finalize(message); // Shortcut var cipherCfg = encryptor.cfg; // Create and return serializable cipher params return CipherParams.create({ ciphertext: ciphertext, key: key, iv: cipherCfg.iv, algorithm: cipher, mode: cipherCfg.mode, padding: cipherCfg.padding, blockSize: cipher.blockSize, formatter: cfg.format }); }, /** * Decrypts serialized ciphertext. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Decrypt var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext); return plaintext; }, /** * Converts serialized ciphertext to CipherParams, * else assumed CipherParams already and returns ciphertext unchanged. * * @param {CipherParams|string} ciphertext The ciphertext. * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext. * * @return {CipherParams} The unserialized ciphertext. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format); */ _parse: function (ciphertext, format) { if (typeof ciphertext == 'string') { return format.parse(ciphertext, this); } else { return ciphertext; } } }); /** * Key derivation function namespace. */ var C_kdf = C.kdf = {}; /** * OpenSSL key derivation function. */ var OpenSSLKdf = C_kdf.OpenSSL = { /** * Derives a key and IV from a password. * * @param {string} password The password to derive from. * @param {number} keySize The size in words of the key to generate. * @param {number} ivSize The size in words of the IV to generate. * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly. * * @return {CipherParams} A cipher params object with the key, IV, and salt. * * @static * * @example * * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32); * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt'); */ execute: function (password, keySize, ivSize, salt, hasher) { // Generate random salt if (!salt) { salt = WordArray.random(64/8); } // Derive key and IV if (!hasher) { var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt); } else { var key = EvpKDF.create({ keySize: keySize + ivSize, hasher: hasher }).compute(password, salt); } // Separate key and IV var iv = WordArray.create(key.words.slice(keySize), ivSize * 4); key.sigBytes = keySize * 4; // Return params return CipherParams.create({ key: key, iv: iv, salt: salt }); } }; /** * A serializable cipher wrapper that derives the key from a password, * and returns ciphertext as a serializable cipher params object. */ var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({ /** * Configuration options. * * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL */ cfg: SerializableCipher.cfg.extend({ kdf: OpenSSLKdf }), /** * Encrypts a message using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password'); * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, cfg.salt, cfg.hasher); // Add IV to config cfg.iv = derivedParams.iv; // Encrypt var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg); // Mix in derived params ciphertext.mixIn(derivedParams); return ciphertext; }, /** * Decrypts serialized ciphertext using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt, cfg.hasher); // Add IV to config cfg.iv = derivedParams.iv; // Decrypt var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg); return plaintext; } }); }()); })); /***/ }), /***/ "./node_modules/crypto-js/core.js": /*!****************************************!*\ !*** ./node_modules/crypto-js/core.js ***! \****************************************/ /***/ (function(module, exports, __webpack_require__) { ;(function (root, factory) { if (true) { // CommonJS module.exports = exports = factory(); } else // removed by dead control flow {} }(this, function () { /*globals window, global, require*/ /** * CryptoJS core components. */ var CryptoJS = CryptoJS || (function (Math, undefined) { var crypto; // Native crypto from window (Browser) if (typeof window !== 'undefined' && window.crypto) { crypto = window.crypto; } // Native crypto in web worker (Browser) if (typeof self !== 'undefined' && self.crypto) { crypto = self.crypto; } // Native crypto from worker if (typeof globalThis !== 'undefined' && globalThis.crypto) { crypto = globalThis.crypto; } // Native (experimental IE 11) crypto from window (Browser) if (!crypto && typeof window !== 'undefined' && window.msCrypto) { crypto = window.msCrypto; } // Native crypto from global (NodeJS) if (!crypto && typeof __webpack_require__.g !== 'undefined' && __webpack_require__.g.crypto) { crypto = __webpack_require__.g.crypto; } // Native crypto import via require (NodeJS) if (!crypto && "function" === 'function') { try { crypto = __webpack_require__(/*! crypto */ "?9157"); } catch (err) {} } /* * Cryptographically secure pseudorandom number generator * * As Math.random() is cryptographically not safe to use */ var cryptoSecureRandomInt = function () { if (crypto) { // Use getRandomValues method (Browser) if (typeof crypto.getRandomValues === 'function') { try { return crypto.getRandomValues(new Uint32Array(1))[0]; } catch (err) {} } // Use randomBytes method (NodeJS) if (typeof crypto.randomBytes === 'function') { try { return crypto.randomBytes(4).readInt32LE(); } catch (err) {} } } throw new Error('Native crypto module could not be used to get secure random number.'); }; /* * Local polyfill of Object.create */ var create = Object.create || (function () { function F() {} return function (obj) { var subtype; F.prototype = obj; subtype = new F(); F.prototype = null; return subtype; }; }()); /** * CryptoJS namespace. */ var C = {}; /** * Library namespace. */ var C_lib = C.lib = {}; /** * Base object for prototypal inheritance. */ var Base = C_lib.Base = (function () { return { /** * Creates a new object that inherits from this object. * * @param {Object} overrides Properties to copy into the new object. * * @return {Object} The new object. * * @static * * @example * * var MyType = CryptoJS.lib.Base.extend({ * field: 'value', * * method: function () { * } * }); */ extend: function (overrides) { // Spawn var subtype = create(this); // Augment if (overrides) { subtype.mixIn(overrides); } // Create default initializer if (!subtype.hasOwnProperty('init') || this.init === subtype.init) { subtype.init = function () { subtype.$super.init.apply(this, arguments); }; } // Initializer's prototype is the subtype object subtype.init.prototype = subtype; // Reference supertype subtype.$super = this; return subtype; }, /** * Extends this object and runs the init method. * Arguments to create() will be passed to init(). * * @return {Object} The new object. * * @static * * @example * * var instance = MyType.create(); */ create: function () { var instance = this.extend(); instance.init.apply(instance, arguments); return instance; }, /** * Initializes a newly created object. * Override this method to add some logic when your objects are created. * * @example * * var MyType = CryptoJS.lib.Base.extend({ * init: function () { * // ... * } * }); */ init: function () { }, /** * Copies properties into this object. * * @param {Object} properties The properties to mix in. * * @example * * MyType.mixIn({ * field: 'value' * }); */ mixIn: function (properties) { for (var propertyName in properties) { if (properties.hasOwnProperty(propertyName)) { this[propertyName] = properties[propertyName]; } } // IE won't copy toString using the loop above if (properties.hasOwnProperty('toString')) { this.toString = properties.toString; } }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = instance.clone(); */ clone: function () { return this.init.prototype.extend(this); } }; }()); /** * An array of 32-bit words. * * @property {Array} words The array of 32-bit words. * @property {number} sigBytes The number of significant bytes in this word array. */ var WordArray = C_lib.WordArray = Base.extend({ /** * Initializes a newly created word array. * * @param {Array} words (Optional) An array of 32-bit words. * @param {number} sigBytes (Optional) The number of significant bytes in the words. * * @example * * var wordArray = CryptoJS.lib.WordArray.create(); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6); */ init: function (words, sigBytes) { words = this.words = words || []; if (sigBytes != undefined) { this.sigBytes = sigBytes; } else { this.sigBytes = words.length * 4; } }, /** * Converts this word array to a string. * * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex * * @return {string} The stringified word array. * * @example * * var string = wordArray + ''; * var string = wordArray.toString(); * var string = wordArray.toString(CryptoJS.enc.Utf8); */ toString: function (encoder) { return (encoder || Hex).stringify(this); }, /** * Concatenates a word array to this word array. * * @param {WordArray} wordArray The word array to append. * * @return {WordArray} This word array. * * @example * * wordArray1.concat(wordArray2); */ concat: function (wordArray) { // Shortcuts var thisWords = this.words; var thatWords = wordArray.words; var thisSigBytes = this.sigBytes; var thatSigBytes = wordArray.sigBytes; // Clamp excess bits this.clamp(); // Concat if (thisSigBytes % 4) { // Copy one byte at a time for (var i = 0; i < thatSigBytes; i++) { var