scs-solver
Version:
WebAssembly version of the SCS convex programming solver
423 lines (335 loc) • 11.4 kB
Markdown
# scs.wasm
[](https://www.npmjs.com/package/scs-solver)
[](https://www.npmjs.com/package/scs-solver)
WebAssembly version of the [SCS (Splitting Conic Solver) convex programming solver](https://www.cvxgrp.org/scs/) for JavaScript environments including browsers and Node.js.
<img src="https://github.com/DominikPeters/scs.wasm/blob/master/info/scs_wasm_logo_white.png" width="450" alt="SCS WebAssembly Logo">
## Install
To use SCS in your JavaScript project, you can install it from npm:
```bash
npm install scs-solver
```
In the browser, you can use SCS directly in the browser using one of the following script tags:
```html
<script src="https://unpkg.com/scs-solver/dist/scs.js"></script>
<script src="https://cdn.jsdelivr.net/npm/scs-solver/dist/scs.js"></script>
```
or by importing it in a JavaScript module:
```javascript
<script type="module">
import createSCS from 'https://unpkg.com/scs-solver/dist/scs.mjs';
// ...
</script>
```
## Build from Source
To build the WebAssembly (WASM) version of SCS, you will need to have
`Emscripten` installed, and `emcc` in your path. To install it, run:
```bash
git clone https://github.com/emscripten-core/emsdk.git
cd emsdk
./emsdk install latest
./emsdk activate latest
source ./emsdk_env.sh
```
Now clone the SCS repo from GitHub and compile the WebAssembly (WASM)
version of SCS.
```bash
git clone https://github.com/DominikPeters/scs.wasm
make wasm
```
If `make` completes successfully, you will find the compiled `scs.wasm`
file and the JavaScript wrapper `scs.js` in the `dist` directory. You can
now use these files in your JavaScript project, either in the browser or in
Node.js.
The JavaScript version does not support compiling with BLAS and LAPACK.
## Interface
After building the WebAssembly version, you can use SCS in
JavaScript environments including browsers and Node.js.
Note that the JavaScript version does not support compiling with BLAS and LAPACK,
so it does not support solving SDPs.
### Basic Usage
In Node.js, you can use SCS as follows:
```javascript
const createSCS = require('scs-solver');
createSCS().then(SCS => {
// define problem here
SCS.solve(data, cone, settings);
});
```
Alternatively, you can use ES6 modules, as well as async/await:
```javascript
import createSCS from 'scs-solver';
async function main() {
const SCS = await createSCS();
// define problem here
SCS.solve(data, cone, settings);
}
main();
```
### Data Format
Problem data must be provided as sparse matrices in CSC format using the following structure:
```javascript
const data = {
m: number, // Number of rows of A
n: number, // Number of cols of A and of P
A_x: number[], // Non-zero elements of matrix A
A_i: number[], // Row indices of A elements
A_p: number[], // Column pointers for A
P_x: number[], // Non-zero elements of matrix P (optional)
P_i: number[], // Row indices of P elements (optional)
P_p: number[], // Column pointers for P (optional)
b: number[], // Length m array
c: number[] // Length n array
};
```
One way to handle the CSC format in javascript is via the
[Math.js library](https://mathjs.org/docs/reference/classes/sparsematrix.html), for example:
```javascript
// npm install mathjs
const { matrix } = require('mathjs');
// or import { matrix } from 'mathjs';
// or <script src="https://unpkg.com/mathjs@14.0.1/lib/browser/math.js"></script>
const A = matrix([
[1, 0],
[0, 1],
[1, 1]
], 'sparse');
const P = matrix([
[3, 0],
[0, 2]
], 'sparse');
const data = {
m: 3,
n: 2,
A_x: A._values,
A_i: A._index,
A_p: A._ptr,
P_x: P._values,
P_i: P._index,
P_p: P._ptr,
b: [-1.0, 0.3, -0.5],
c: [-1.0, -1.0]
};
```
### Cone Specification
Cones are specified using the following structure:
```javascript
const cone = {
z: number, // Number of linear equality constraints (primal zero, dual free)
l: number, // Number of positive orthant cones
bu: number[], // Upper box values (optional)
bl: number[], // Lower box values (optional)
bsize: number, // Total length of box cone
q: number[], // Array of second-order cone constraints (optional)
qsize: number, // Length of second-order cone array
ep: number, // Number of primal exponential cone triples
ed: number, // Number of dual exponential cone triples
p: number[], // Array of power cone parameters (optional)
psize: number // Number of power cone triples convergence
};
```
### Settings
Control solver behavior using settings:
```javascript
const settings = new Module.ScsSettings();
Module.setDefaultSettings(settings);
```
Available settings:
- `normalize` (boolean): Heuristically rescale problem data
- `scale` (number): Initial dual scaling factor
- `adaptiveScale` (boolean): Whether to adaptively update scale
- `rhoX` (number): Primal constraint scaling factor
- `maxIters` (number): Maximum iterations to take
- `epsAbs` (number): Absolute convergence tolerance
- `epsRel` (number): Relative convergence tolerance
- `epsInfeas` (number): Infeasible convergence tolerance
- `alpha` (number): Douglas-Rachford relaxation parameter
- `timeLimitSecs` (number): Time limit in seconds
- `verbose` (number): Output level (0-3)
- `warmStart` (boolean): Use warm starting
### Solving Problems
Use the `solve` function to solve optimization problems:
```javascript
const solution = Module.solve(data, cone, settings, [warmStartSolution]);
```
The function takes an optional `warmStartSolution` object to warm-start the solver,
provided `settings.warmStart` is set to `true`.
The returned `solution` object contains:
- `x`: Primal variables
- `y`: Dual variables
- `s`: Slack variables
- `info`: Solver information
- `iter`: Number of iterations
- `pobj`: Primal objective
- `dobj`: Dual objective
- `resPri`: Primal residual
- `resDual`: Dual residual
- `resInfeas`: Infeasibility residual
- `resUnbdd`: Unboundedness measure
- `solveTime`: Solve time
- `setupTime`: Setup time
- `status`: Solution status code
## Examples
These examples assume that you have loaded `scs.js`, either in Node.js via
```javascript
const createSCS = require('scs.js'); // if using CommonJS
import createSCS from 'scs.js'; // if using ES6 modules
```
or in the browser via
```html
<script src="scs.js"></script>
```
### Basic Usage
Here's a [basic example from the SCS documentation for C](https://www.cvxgrp.org/scs/examples/c.html) translated to JavaScript:
```javascript
createSCS().then(SCS => {
const data = {
m: 3,
n: 2,
A_x: [-1.0, 1.0, 1.0, 1.0],
A_i: [0, 1, 0, 2],
A_p: [0, 2, 4],
P_x: [3.0, -1.0, 2.0],
P_i: [0, 0, 1],
P_p: [0, 1, 3],
b: [-1.0, 0.3, -0.5],
c: [-1.0, -1.0]
};
const cone = {
z: 1,
l: 2,
};
const settings = new SCS.ScsSettings();
SCS.setDefaultSettings(settings);
settings.epsAbs = 1e-9;
settings.epsRel = 1e-9;
const solution = SCS.solve(data, cone, settings);
console.log(solution);
// re-solve using warm start (will be faster)
settings.warmStart = true;
const solution2 = SCS.solve(data, cone, settings, solution);
});
```
This prints the solution object to the console:
```javascript
{
x: [ 0.3000000000043908, -0.6999999999956144 ],
y: [ 2.699999999995767, 2.0999999999869825, 0 ],
s: [ 0, 0, 0.1999999999956145 ],
info: {
iter: 100,
pobj: 1.2349999999907928,
dobj: 1.2350000000001042,
resPri: 4.390808429506794e-12,
resDual: 1.4869081633461182e-13,
resInfeas: 1.3043478260851176,
resUnbdd: NaN,
solveTime: 0.598459,
setupTime: 11.603125
},
status: 1
}
```
### Entropy Example
Next, we will consider a problem involving maximum entropy. Given a vector
$y \in \mathbb{R}^n$, we want to optimize a function involving entropy
over the unit simplex.
```math
\begin{align*}
\text{minimize} \quad & \sum_{i = 1}^n x_i \log x_i - \langle y, x \rangle \\
\text{subject to} \quad & \sum_{i = 1}^n x_i = 1 \\
& x \geq 0
\end{align*}
```
It is known that for the optimal solution, we have $x_i \propto e^{y_i}$.
This problem can be formulated using the (primal) exponential cone,
defined as
```math
\begin{align*}
\mathcal{K}_{\text{exp}} &= \{ (x,y,z) \in \mathbf{R}^3 \mid y e^{x/y} \leq z, y>0 \} \\
&= \{ (x,y,z) \in \mathbf{R}^3 \mid y \log(z/y) \geq x, y>0, z>0 \}
\end{align*}
```
Our formulation is then:
```math
\begin{align*}
\text{minimize} \quad & \sum_{i = 1}^n t_i - \langle y, x \rangle \\
\text{subject to} \quad & \sum_{i = 1}^n x_i = 1 \\
& x_i \geq 0 \: && \forall i \\
& (-t_i, x_i, 1) \in \mathcal{K}_{\text{exp}} \: && \forall i
\end{align*}
```
To implement this problem in JavaScript, we will use the sparse matrix
implementation from the [Math.js library](https://mathjs.org/docs/reference/classes/sparsematrix.html).
```javascript
const createSCS = require('./out/scs.js');
const math = require('./math.js');
createSCS().then(SCS => {
const n = 5;
const y = Array.from({ length: n }, () => Math.random());
const A = math.matrix('sparse');
const b = [];
let constraintIndex = 0;
const x_vars = Array.from({ length: n }, (_, i) => i);
const t_vars = Array.from({ length: n }, (_, i) => i + n);
// equality constraint (zero cone)
let numEqCones = 0;
for (let i = 0; i < n; i++) {
A.set([constraintIndex, x_vars[i]], 1);
}
b.push(1);
constraintIndex++;
numEqCones++;
// inequality constraints (positive cone)
let numPosCones = 0;
for (let i = 0; i < n; i++) {
A.set([constraintIndex, x_vars[i]], -1);
b.push(0);
constraintIndex++;
numPosCones++;
}
// exponential cone constraints
let numExpCones = 0;
for (let i = 0; i < n; i++) {
// (-t_i, x_i, 1) in exponential cone
A.set([constraintIndex, t_vars[i]], 1);
b.push(0);
constraintIndex++;
A.set([constraintIndex, x_vars[i]], -1);
b.push(0);
constraintIndex++;
// last element is constant, so A has a 0-row; set arbitrary index to 0
A.set([constraintIndex, x_vars[i]], 0);
b.push(1);
constraintIndex++;
numExpCones++;
}
// objective function
const c = Array.from({ length: 2 * n }, (_, i) => 0);
for (let i = 0; i < n; i++) {
c[x_vars[i]] = -y[i];
c[t_vars[i]] = 1;
}
const data = {
m: A._size[0],
n: A._size[1],
A_x: A._values,
A_i: A._index,
A_p: A._ptr,
b: b,
c: c,
};
const cone = {
z: numEqCones,
l: numPosCones,
ep: numExpCones,
};
const settings = new SCS.ScsSettings();
SCS.setDefaultSettings(settings);
settings.epsAbs = 1e-9;
settings.epsRel = 1e-9;
const solution = SCS.solve(data, cone, settings);
console.log("SCS solution:", solution.x.slice(0, n));
const denominator = y.map(y_i => Math.exp(y_i)).reduce((a, b) => a + b, 0);
const predicted_solution = y.map(y_i => Math.exp(y_i) / denominator);
console.log("Predicted solution:", predicted_solution);
});