scheduler
Version:
Cooperative scheduler for the browser environment.
1,023 lines (845 loc) • 30.2 kB
JavaScript
/** @license React v0.16.2
* scheduler.development.js
*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
;
if (process.env.NODE_ENV !== "production") {
(function() {
;
Object.defineProperty(exports, '__esModule', { value: true });
var enableSchedulerDebugging = false;
var enableIsInputPending = false;
var enableMessageLoopImplementation = true;
var enableProfiling = true;
// works by scheduling a requestAnimationFrame, storing the time for the start
// of the frame, then scheduling a postMessage which gets scheduled after paint.
// Within the postMessage handler do as much work as possible until time + frame
// rate. By separating the idle call into a separate event tick we ensure that
// layout, paint and other browser work is counted against the available time.
// The frame rate is dynamically adjusted.
var requestHostCallback;
var requestHostTimeout;
var cancelHostTimeout;
var shouldYieldToHost;
var requestPaint;
if ( // If Scheduler runs in a non-DOM environment, it falls back to a naive
// implementation using setTimeout.
typeof window === 'undefined' || // Check if MessageChannel is supported, too.
typeof MessageChannel !== 'function') {
// If this accidentally gets imported in a non-browser environment, e.g. JavaScriptCore,
// fallback to a naive implementation.
var _callback = null;
var _timeoutID = null;
var _flushCallback = function () {
if (_callback !== null) {
try {
var currentTime = exports.unstable_now();
var hasRemainingTime = true;
_callback(hasRemainingTime, currentTime);
_callback = null;
} catch (e) {
setTimeout(_flushCallback, 0);
throw e;
}
}
};
var initialTime = Date.now();
exports.unstable_now = function () {
return Date.now() - initialTime;
};
requestHostCallback = function (cb) {
if (_callback !== null) {
// Protect against re-entrancy.
setTimeout(requestHostCallback, 0, cb);
} else {
_callback = cb;
setTimeout(_flushCallback, 0);
}
};
requestHostTimeout = function (cb, ms) {
_timeoutID = setTimeout(cb, ms);
};
cancelHostTimeout = function () {
clearTimeout(_timeoutID);
};
shouldYieldToHost = function () {
return false;
};
requestPaint = exports.unstable_forceFrameRate = function () {};
} else {
// Capture local references to native APIs, in case a polyfill overrides them.
var performance = window.performance;
var _Date = window.Date;
var _setTimeout = window.setTimeout;
var _clearTimeout = window.clearTimeout;
var requestAnimationFrame = window.requestAnimationFrame;
var cancelAnimationFrame = window.cancelAnimationFrame;
if (typeof console !== 'undefined') {
// TODO: Remove fb.me link
if (typeof requestAnimationFrame !== 'function') {
console.error("This browser doesn't support requestAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills');
}
if (typeof cancelAnimationFrame !== 'function') {
console.error("This browser doesn't support cancelAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills');
}
}
if (typeof performance === 'object' && typeof performance.now === 'function') {
exports.unstable_now = function () {
return performance.now();
};
} else {
var _initialTime = _Date.now();
exports.unstable_now = function () {
return _Date.now() - _initialTime;
};
}
var isRAFLoopRunning = false;
var isMessageLoopRunning = false;
var scheduledHostCallback = null;
var rAFTimeoutID = -1;
var taskTimeoutID = -1;
var frameLength = enableMessageLoopImplementation ? // We won't attempt to align with the vsync. Instead we'll yield multiple
// times per frame, often enough to keep it responsive even at really
// high frame rates > 120.
5 : // Use a heuristic to measure the frame rate and yield at the end of the
// frame. We start out assuming that we run at 30fps but then the
// heuristic tracking will adjust this value to a faster fps if we get
// more frequent animation frames.
33.33;
var prevRAFTime = -1;
var prevRAFInterval = -1;
var frameDeadline = 0;
var fpsLocked = false; // TODO: Make this configurable
// TODO: Adjust this based on priority?
var maxFrameLength = 300;
var needsPaint = false;
if (enableIsInputPending && navigator !== undefined && navigator.scheduling !== undefined && navigator.scheduling.isInputPending !== undefined) {
var scheduling = navigator.scheduling;
shouldYieldToHost = function () {
var currentTime = exports.unstable_now();
if (currentTime >= frameDeadline) {
// There's no time left in the frame. We may want to yield control of
// the main thread, so the browser can perform high priority tasks. The
// main ones are painting and user input. If there's a pending paint or
// a pending input, then we should yield. But if there's neither, then
// we can yield less often while remaining responsive. We'll eventually
// yield regardless, since there could be a pending paint that wasn't
// accompanied by a call to `requestPaint`, or other main thread tasks
// like network events.
if (needsPaint || scheduling.isInputPending()) {
// There is either a pending paint or a pending input.
return true;
} // There's no pending input. Only yield if we've reached the max
// frame length.
return currentTime >= frameDeadline + maxFrameLength;
} else {
// There's still time left in the frame.
return false;
}
};
requestPaint = function () {
needsPaint = true;
};
} else {
// `isInputPending` is not available. Since we have no way of knowing if
// there's pending input, always yield at the end of the frame.
shouldYieldToHost = function () {
return exports.unstable_now() >= frameDeadline;
}; // Since we yield every frame regardless, `requestPaint` has no effect.
requestPaint = function () {};
}
exports.unstable_forceFrameRate = function (fps) {
if (fps < 0 || fps > 125) {
console.error('forceFrameRate takes a positive int between 0 and 125, ' + 'forcing framerates higher than 125 fps is not unsupported');
return;
}
if (fps > 0) {
frameLength = Math.floor(1000 / fps);
fpsLocked = true;
} else {
// reset the framerate
frameLength = 33.33;
fpsLocked = false;
}
};
var performWorkUntilDeadline = function () {
if (enableMessageLoopImplementation) {
if (scheduledHostCallback !== null) {
var currentTime = exports.unstable_now(); // Yield after `frameLength` ms, regardless of where we are in the vsync
// cycle. This means there's always time remaining at the beginning of
// the message event.
frameDeadline = currentTime + frameLength;
var hasTimeRemaining = true;
try {
var hasMoreWork = scheduledHostCallback(hasTimeRemaining, currentTime);
if (!hasMoreWork) {
isMessageLoopRunning = false;
scheduledHostCallback = null;
} else {
// If there's more work, schedule the next message event at the end
// of the preceding one.
port.postMessage(null);
}
} catch (error) {
// If a scheduler task throws, exit the current browser task so the
// error can be observed.
port.postMessage(null);
throw error;
}
} else {
isMessageLoopRunning = false;
} // Yielding to the browser will give it a chance to paint, so we can
// reset this.
needsPaint = false;
} else {
if (scheduledHostCallback !== null) {
var _currentTime = exports.unstable_now();
var _hasTimeRemaining = frameDeadline - _currentTime > 0;
try {
var _hasMoreWork = scheduledHostCallback(_hasTimeRemaining, _currentTime);
if (!_hasMoreWork) {
scheduledHostCallback = null;
}
} catch (error) {
// If a scheduler task throws, exit the current browser task so the
// error can be observed, and post a new task as soon as possible
// so we can continue where we left off.
port.postMessage(null);
throw error;
}
} // Yielding to the browser will give it a chance to paint, so we can
// reset this.
needsPaint = false;
}
};
var channel = new MessageChannel();
var port = channel.port2;
channel.port1.onmessage = performWorkUntilDeadline;
var onAnimationFrame = function (rAFTime) {
if (scheduledHostCallback === null) {
// No scheduled work. Exit.
prevRAFTime = -1;
prevRAFInterval = -1;
isRAFLoopRunning = false;
return;
} // Eagerly schedule the next animation callback at the beginning of the
// frame. If the scheduler queue is not empty at the end of the frame, it
// will continue flushing inside that callback. If the queue *is* empty,
// then it will exit immediately. Posting the callback at the start of the
// frame ensures it's fired within the earliest possible frame. If we
// waited until the end of the frame to post the callback, we risk the
// browser skipping a frame and not firing the callback until the frame
// after that.
isRAFLoopRunning = true;
requestAnimationFrame(function (nextRAFTime) {
_clearTimeout(rAFTimeoutID);
onAnimationFrame(nextRAFTime);
}); // requestAnimationFrame is throttled when the tab is backgrounded. We
// don't want to stop working entirely. So we'll fallback to a timeout loop.
// TODO: Need a better heuristic for backgrounded work.
var onTimeout = function () {
frameDeadline = exports.unstable_now() + frameLength / 2;
performWorkUntilDeadline();
rAFTimeoutID = _setTimeout(onTimeout, frameLength * 3);
};
rAFTimeoutID = _setTimeout(onTimeout, frameLength * 3);
if (prevRAFTime !== -1 && // Make sure this rAF time is different from the previous one. This check
// could fail if two rAFs fire in the same frame.
rAFTime - prevRAFTime > 0.1) {
var rAFInterval = rAFTime - prevRAFTime;
if (!fpsLocked && prevRAFInterval !== -1) {
// We've observed two consecutive frame intervals. We'll use this to
// dynamically adjust the frame rate.
//
// If one frame goes long, then the next one can be short to catch up.
// If two frames are short in a row, then that's an indication that we
// actually have a higher frame rate than what we're currently
// optimizing. For example, if we're running on 120hz display or 90hz VR
// display. Take the max of the two in case one of them was an anomaly
// due to missed frame deadlines.
if (rAFInterval < frameLength && prevRAFInterval < frameLength) {
frameLength = rAFInterval < prevRAFInterval ? prevRAFInterval : rAFInterval;
if (frameLength < 8.33) {
// Defensive coding. We don't support higher frame rates than 120hz.
// If the calculated frame length gets lower than 8, it is probably
// a bug.
frameLength = 8.33;
}
}
}
prevRAFInterval = rAFInterval;
}
prevRAFTime = rAFTime;
frameDeadline = rAFTime + frameLength; // We use the postMessage trick to defer idle work until after the repaint.
port.postMessage(null);
};
requestHostCallback = function (callback) {
scheduledHostCallback = callback;
if (enableMessageLoopImplementation) {
if (!isMessageLoopRunning) {
isMessageLoopRunning = true;
port.postMessage(null);
}
} else {
if (!isRAFLoopRunning) {
// Start a rAF loop.
isRAFLoopRunning = true;
requestAnimationFrame(function (rAFTime) {
onAnimationFrame(rAFTime);
});
}
}
};
requestHostTimeout = function (callback, ms) {
taskTimeoutID = _setTimeout(function () {
callback(exports.unstable_now());
}, ms);
};
cancelHostTimeout = function () {
_clearTimeout(taskTimeoutID);
taskTimeoutID = -1;
};
}
function push(heap, node) {
var index = heap.length;
heap.push(node);
siftUp(heap, node, index);
}
function peek(heap) {
var first = heap[0];
return first === undefined ? null : first;
}
function pop(heap) {
var first = heap[0];
if (first !== undefined) {
var last = heap.pop();
if (last !== first) {
heap[0] = last;
siftDown(heap, last, 0);
}
return first;
} else {
return null;
}
}
function siftUp(heap, node, i) {
var index = i;
while (true) {
var parentIndex = Math.floor((index - 1) / 2);
var parent = heap[parentIndex];
if (parent !== undefined && compare(parent, node) > 0) {
// The parent is larger. Swap positions.
heap[parentIndex] = node;
heap[index] = parent;
index = parentIndex;
} else {
// The parent is smaller. Exit.
return;
}
}
}
function siftDown(heap, node, i) {
var index = i;
var length = heap.length;
while (index < length) {
var leftIndex = (index + 1) * 2 - 1;
var left = heap[leftIndex];
var rightIndex = leftIndex + 1;
var right = heap[rightIndex]; // If the left or right node is smaller, swap with the smaller of those.
if (left !== undefined && compare(left, node) < 0) {
if (right !== undefined && compare(right, left) < 0) {
heap[index] = right;
heap[rightIndex] = node;
index = rightIndex;
} else {
heap[index] = left;
heap[leftIndex] = node;
index = leftIndex;
}
} else if (right !== undefined && compare(right, node) < 0) {
heap[index] = right;
heap[rightIndex] = node;
index = rightIndex;
} else {
// Neither child is smaller. Exit.
return;
}
}
}
function compare(a, b) {
// Compare sort index first, then task id.
var diff = a.sortIndex - b.sortIndex;
return diff !== 0 ? diff : a.id - b.id;
}
// TODO: Use symbols?
var NoPriority = 0;
var ImmediatePriority = 1;
var UserBlockingPriority = 2;
var NormalPriority = 3;
var LowPriority = 4;
var IdlePriority = 5;
var runIdCounter = 0;
var mainThreadIdCounter = 0;
var profilingStateSize = 4;
var sharedProfilingBuffer = enableProfiling ? // $FlowFixMe Flow doesn't know about SharedArrayBuffer
typeof SharedArrayBuffer === 'function' ? new SharedArrayBuffer(profilingStateSize * Int32Array.BYTES_PER_ELEMENT) : // $FlowFixMe Flow doesn't know about ArrayBuffer
typeof ArrayBuffer === 'function' ? new ArrayBuffer(profilingStateSize * Int32Array.BYTES_PER_ELEMENT) : null // Don't crash the init path on IE9
: null;
var profilingState = enableProfiling && sharedProfilingBuffer !== null ? new Int32Array(sharedProfilingBuffer) : []; // We can't read this but it helps save bytes for null checks
var PRIORITY = 0;
var CURRENT_TASK_ID = 1;
var CURRENT_RUN_ID = 2;
var QUEUE_SIZE = 3;
if (enableProfiling) {
profilingState[PRIORITY] = NoPriority; // This is maintained with a counter, because the size of the priority queue
// array might include canceled tasks.
profilingState[QUEUE_SIZE] = 0;
profilingState[CURRENT_TASK_ID] = 0;
} // Bytes per element is 4
var INITIAL_EVENT_LOG_SIZE = 131072;
var MAX_EVENT_LOG_SIZE = 524288; // Equivalent to 2 megabytes
var eventLogSize = 0;
var eventLogBuffer = null;
var eventLog = null;
var eventLogIndex = 0;
var TaskStartEvent = 1;
var TaskCompleteEvent = 2;
var TaskErrorEvent = 3;
var TaskCancelEvent = 4;
var TaskRunEvent = 5;
var TaskYieldEvent = 6;
var SchedulerSuspendEvent = 7;
var SchedulerResumeEvent = 8;
function logEvent(entries) {
if (eventLog !== null) {
var offset = eventLogIndex;
eventLogIndex += entries.length;
if (eventLogIndex + 1 > eventLogSize) {
eventLogSize *= 2;
if (eventLogSize > MAX_EVENT_LOG_SIZE) {
console.error("Scheduler Profiling: Event log exceeded maximum size. Don't " + 'forget to call `stopLoggingProfilingEvents()`.');
stopLoggingProfilingEvents();
return;
}
var newEventLog = new Int32Array(eventLogSize * 4);
newEventLog.set(eventLog);
eventLogBuffer = newEventLog.buffer;
eventLog = newEventLog;
}
eventLog.set(entries, offset);
}
}
function startLoggingProfilingEvents() {
eventLogSize = INITIAL_EVENT_LOG_SIZE;
eventLogBuffer = new ArrayBuffer(eventLogSize * 4);
eventLog = new Int32Array(eventLogBuffer);
eventLogIndex = 0;
}
function stopLoggingProfilingEvents() {
var buffer = eventLogBuffer;
eventLogSize = 0;
eventLogBuffer = null;
eventLog = null;
eventLogIndex = 0;
return buffer;
}
function markTaskStart(task, time) {
if (enableProfiling) {
profilingState[QUEUE_SIZE]++;
if (eventLog !== null) {
logEvent([TaskStartEvent, time, task.id, task.priorityLevel]);
}
}
}
function markTaskCompleted(task, time) {
if (enableProfiling) {
profilingState[PRIORITY] = NoPriority;
profilingState[CURRENT_TASK_ID] = 0;
profilingState[QUEUE_SIZE]--;
if (eventLog !== null) {
logEvent([TaskCompleteEvent, time, task.id]);
}
}
}
function markTaskCanceled(task, time) {
if (enableProfiling) {
profilingState[QUEUE_SIZE]--;
if (eventLog !== null) {
logEvent([TaskCancelEvent, time, task.id]);
}
}
}
function markTaskErrored(task, time) {
if (enableProfiling) {
profilingState[PRIORITY] = NoPriority;
profilingState[CURRENT_TASK_ID] = 0;
profilingState[QUEUE_SIZE]--;
if (eventLog !== null) {
logEvent([TaskErrorEvent, time, task.id]);
}
}
}
function markTaskRun(task, time) {
if (enableProfiling) {
runIdCounter++;
profilingState[PRIORITY] = task.priorityLevel;
profilingState[CURRENT_TASK_ID] = task.id;
profilingState[CURRENT_RUN_ID] = runIdCounter;
if (eventLog !== null) {
logEvent([TaskRunEvent, time, task.id, runIdCounter]);
}
}
}
function markTaskYield(task, time) {
if (enableProfiling) {
profilingState[PRIORITY] = NoPriority;
profilingState[CURRENT_TASK_ID] = 0;
profilingState[CURRENT_RUN_ID] = 0;
if (eventLog !== null) {
logEvent([TaskYieldEvent, time, task.id, runIdCounter]);
}
}
}
function markSchedulerSuspended(time) {
if (enableProfiling) {
mainThreadIdCounter++;
if (eventLog !== null) {
logEvent([SchedulerSuspendEvent, time, mainThreadIdCounter]);
}
}
}
function markSchedulerUnsuspended(time) {
if (enableProfiling) {
if (eventLog !== null) {
logEvent([SchedulerResumeEvent, time, mainThreadIdCounter]);
}
}
}
/* eslint-disable no-var */
// Math.pow(2, 30) - 1
// 0b111111111111111111111111111111
var maxSigned31BitInt = 1073741823; // Times out immediately
var IMMEDIATE_PRIORITY_TIMEOUT = -1; // Eventually times out
var USER_BLOCKING_PRIORITY = 250;
var NORMAL_PRIORITY_TIMEOUT = 5000;
var LOW_PRIORITY_TIMEOUT = 10000; // Never times out
var IDLE_PRIORITY = maxSigned31BitInt; // Tasks are stored on a min heap
var taskQueue = [];
var timerQueue = []; // Incrementing id counter. Used to maintain insertion order.
var taskIdCounter = 1; // Pausing the scheduler is useful for debugging.
var isSchedulerPaused = false;
var currentTask = null;
var currentPriorityLevel = NormalPriority; // This is set while performing work, to prevent re-entrancy.
var isPerformingWork = false;
var isHostCallbackScheduled = false;
var isHostTimeoutScheduled = false;
function advanceTimers(currentTime) {
// Check for tasks that are no longer delayed and add them to the queue.
var timer = peek(timerQueue);
while (timer !== null) {
if (timer.callback === null) {
// Timer was cancelled.
pop(timerQueue);
} else if (timer.startTime <= currentTime) {
// Timer fired. Transfer to the task queue.
pop(timerQueue);
timer.sortIndex = timer.expirationTime;
push(taskQueue, timer);
if (enableProfiling) {
markTaskStart(timer, currentTime);
timer.isQueued = true;
}
} else {
// Remaining timers are pending.
return;
}
timer = peek(timerQueue);
}
}
function handleTimeout(currentTime) {
isHostTimeoutScheduled = false;
advanceTimers(currentTime);
if (!isHostCallbackScheduled) {
if (peek(taskQueue) !== null) {
isHostCallbackScheduled = true;
requestHostCallback(flushWork);
} else {
var firstTimer = peek(timerQueue);
if (firstTimer !== null) {
requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime);
}
}
}
}
function flushWork(hasTimeRemaining, initialTime) {
if (enableProfiling) {
markSchedulerUnsuspended(initialTime);
} // We'll need a host callback the next time work is scheduled.
isHostCallbackScheduled = false;
if (isHostTimeoutScheduled) {
// We scheduled a timeout but it's no longer needed. Cancel it.
isHostTimeoutScheduled = false;
cancelHostTimeout();
}
isPerformingWork = true;
var previousPriorityLevel = currentPriorityLevel;
try {
if (enableProfiling) {
try {
return workLoop(hasTimeRemaining, initialTime);
} catch (error) {
if (currentTask !== null) {
var currentTime = exports.unstable_now();
markTaskErrored(currentTask, currentTime);
currentTask.isQueued = false;
}
throw error;
}
} else {
// No catch in prod codepath.
return workLoop(hasTimeRemaining, initialTime);
}
} finally {
currentTask = null;
currentPriorityLevel = previousPriorityLevel;
isPerformingWork = false;
if (enableProfiling) {
var _currentTime = exports.unstable_now();
markSchedulerSuspended(_currentTime);
}
}
}
function workLoop(hasTimeRemaining, initialTime) {
var currentTime = initialTime;
advanceTimers(currentTime);
currentTask = peek(taskQueue);
while (currentTask !== null && !(enableSchedulerDebugging && isSchedulerPaused)) {
if (currentTask.expirationTime > currentTime && (!hasTimeRemaining || shouldYieldToHost())) {
// This currentTask hasn't expired, and we've reached the deadline.
break;
}
var callback = currentTask.callback;
if (callback !== null) {
currentTask.callback = null;
currentPriorityLevel = currentTask.priorityLevel;
var didUserCallbackTimeout = currentTask.expirationTime <= currentTime;
markTaskRun(currentTask, currentTime);
var continuationCallback = callback(didUserCallbackTimeout);
currentTime = exports.unstable_now();
if (typeof continuationCallback === 'function') {
currentTask.callback = continuationCallback;
markTaskYield(currentTask, currentTime);
} else {
if (enableProfiling) {
markTaskCompleted(currentTask, currentTime);
currentTask.isQueued = false;
}
if (currentTask === peek(taskQueue)) {
pop(taskQueue);
}
}
advanceTimers(currentTime);
} else {
pop(taskQueue);
}
currentTask = peek(taskQueue);
} // Return whether there's additional work
if (currentTask !== null) {
return true;
} else {
var firstTimer = peek(timerQueue);
if (firstTimer !== null) {
requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime);
}
return false;
}
}
function unstable_runWithPriority(priorityLevel, eventHandler) {
switch (priorityLevel) {
case ImmediatePriority:
case UserBlockingPriority:
case NormalPriority:
case LowPriority:
case IdlePriority:
break;
default:
priorityLevel = NormalPriority;
}
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = priorityLevel;
try {
return eventHandler();
} finally {
currentPriorityLevel = previousPriorityLevel;
}
}
function unstable_next(eventHandler) {
var priorityLevel;
switch (currentPriorityLevel) {
case ImmediatePriority:
case UserBlockingPriority:
case NormalPriority:
// Shift down to normal priority
priorityLevel = NormalPriority;
break;
default:
// Anything lower than normal priority should remain at the current level.
priorityLevel = currentPriorityLevel;
break;
}
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = priorityLevel;
try {
return eventHandler();
} finally {
currentPriorityLevel = previousPriorityLevel;
}
}
function unstable_wrapCallback(callback) {
var parentPriorityLevel = currentPriorityLevel;
return function () {
// This is a fork of runWithPriority, inlined for performance.
var previousPriorityLevel = currentPriorityLevel;
currentPriorityLevel = parentPriorityLevel;
try {
return callback.apply(this, arguments);
} finally {
currentPriorityLevel = previousPriorityLevel;
}
};
}
function timeoutForPriorityLevel(priorityLevel) {
switch (priorityLevel) {
case ImmediatePriority:
return IMMEDIATE_PRIORITY_TIMEOUT;
case UserBlockingPriority:
return USER_BLOCKING_PRIORITY;
case IdlePriority:
return IDLE_PRIORITY;
case LowPriority:
return LOW_PRIORITY_TIMEOUT;
case NormalPriority:
default:
return NORMAL_PRIORITY_TIMEOUT;
}
}
function unstable_scheduleCallback(priorityLevel, callback, options) {
var currentTime = exports.unstable_now();
var startTime;
var timeout;
if (typeof options === 'object' && options !== null) {
var delay = options.delay;
if (typeof delay === 'number' && delay > 0) {
startTime = currentTime + delay;
} else {
startTime = currentTime;
}
timeout = typeof options.timeout === 'number' ? options.timeout : timeoutForPriorityLevel(priorityLevel);
} else {
timeout = timeoutForPriorityLevel(priorityLevel);
startTime = currentTime;
}
var expirationTime = startTime + timeout;
var newTask = {
id: taskIdCounter++,
callback: callback,
priorityLevel: priorityLevel,
startTime: startTime,
expirationTime: expirationTime,
sortIndex: -1
};
if (enableProfiling) {
newTask.isQueued = false;
}
if (startTime > currentTime) {
// This is a delayed task.
newTask.sortIndex = startTime;
push(timerQueue, newTask);
if (peek(taskQueue) === null && newTask === peek(timerQueue)) {
// All tasks are delayed, and this is the task with the earliest delay.
if (isHostTimeoutScheduled) {
// Cancel an existing timeout.
cancelHostTimeout();
} else {
isHostTimeoutScheduled = true;
} // Schedule a timeout.
requestHostTimeout(handleTimeout, startTime - currentTime);
}
} else {
newTask.sortIndex = expirationTime;
push(taskQueue, newTask);
if (enableProfiling) {
markTaskStart(newTask, currentTime);
newTask.isQueued = true;
} // Schedule a host callback, if needed. If we're already performing work,
// wait until the next time we yield.
if (!isHostCallbackScheduled && !isPerformingWork) {
isHostCallbackScheduled = true;
requestHostCallback(flushWork);
}
}
return newTask;
}
function unstable_pauseExecution() {
isSchedulerPaused = true;
}
function unstable_continueExecution() {
isSchedulerPaused = false;
if (!isHostCallbackScheduled && !isPerformingWork) {
isHostCallbackScheduled = true;
requestHostCallback(flushWork);
}
}
function unstable_getFirstCallbackNode() {
return peek(taskQueue);
}
function unstable_cancelCallback(task) {
if (enableProfiling) {
if (task.isQueued) {
var currentTime = exports.unstable_now();
markTaskCanceled(task, currentTime);
task.isQueued = false;
}
} // Null out the callback to indicate the task has been canceled. (Can't
// remove from the queue because you can't remove arbitrary nodes from an
// array based heap, only the first one.)
task.callback = null;
}
function unstable_getCurrentPriorityLevel() {
return currentPriorityLevel;
}
function unstable_shouldYield() {
var currentTime = exports.unstable_now();
advanceTimers(currentTime);
var firstTask = peek(taskQueue);
return firstTask !== currentTask && currentTask !== null && firstTask !== null && firstTask.callback !== null && firstTask.startTime <= currentTime && firstTask.expirationTime < currentTask.expirationTime || shouldYieldToHost();
}
var unstable_requestPaint = requestPaint;
var unstable_Profiling = enableProfiling ? {
startLoggingProfilingEvents: startLoggingProfilingEvents,
stopLoggingProfilingEvents: stopLoggingProfilingEvents,
sharedProfilingBuffer: sharedProfilingBuffer
} : null;
exports.unstable_ImmediatePriority = ImmediatePriority;
exports.unstable_UserBlockingPriority = UserBlockingPriority;
exports.unstable_NormalPriority = NormalPriority;
exports.unstable_IdlePriority = IdlePriority;
exports.unstable_LowPriority = LowPriority;
exports.unstable_runWithPriority = unstable_runWithPriority;
exports.unstable_next = unstable_next;
exports.unstable_scheduleCallback = unstable_scheduleCallback;
exports.unstable_cancelCallback = unstable_cancelCallback;
exports.unstable_wrapCallback = unstable_wrapCallback;
exports.unstable_getCurrentPriorityLevel = unstable_getCurrentPriorityLevel;
exports.unstable_shouldYield = unstable_shouldYield;
exports.unstable_requestPaint = unstable_requestPaint;
exports.unstable_continueExecution = unstable_continueExecution;
exports.unstable_pauseExecution = unstable_pauseExecution;
exports.unstable_getFirstCallbackNode = unstable_getFirstCallbackNode;
exports.unstable_Profiling = unstable_Profiling;
})();
}