sanity
Version:
Sanity is a real-time content infrastructure with a scalable, hosted backend featuring a Graph Oriented Query Language (GROQ), asset pipelines and fast edge caches
668 lines (667 loc) • 34.4 kB
JavaScript
import { jsxs, jsx } from "react/jsx-runtime";
import { motion } from "framer-motion";
import { memo, useMemo } from "react";
/**
* \@license QR Code generator library (TypeScript)
* Copyright (c) Project Nayuki.
* SPDX-License-Identifier: MIT
*/
class QrCode {
/*-- Static factory functions (high level) --*/
// Returns a QR Code representing the given Unicode text string at the given error correction level.
// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer
// Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
// ecl argument if it can be done without increasing the version.
static encodeText(text, ecl) {
const segs = QrSegment.makeSegments(text);
return QrCode.encodeSegments(segs, ecl);
}
// Returns a QR Code representing the given binary data at the given error correction level.
// This function always encodes using the binary segment mode, not any text mode. The maximum number of
// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
static encodeBinary(data, ecl) {
const seg = QrSegment.makeBytes(data);
return QrCode.encodeSegments([seg], ecl);
}
/*-- Static factory functions (mid level) --*/
// Returns a QR Code representing the given segments with the given encoding parameters.
// The smallest possible QR Code version within the given range is automatically
// chosen for the output. Iff boostEcl is true, then the ECC level of the result
// may be higher than the ecl argument if it can be done without increasing the
// version. The mask number is either between 0 to 7 (inclusive) to force that
// mask, or -1 to automatically choose an appropriate mask (which may be slow).
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is encodeText() and encodeBinary().
static encodeSegments(segs, ecl, minVersion = 1, maxVersion = 40, mask = -1, boostEcl = !0) {
if (!(QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= QrCode.MAX_VERSION) || mask < -1 || mask > 7) throw new RangeError("Invalid value");
let version, dataUsedBits;
for (version = minVersion; ; version++) {
const dataCapacityBits2 = QrCode.getNumDataCodewords(version, ecl) * 8, usedBits = QrSegment.getTotalBits(segs, version);
if (usedBits <= dataCapacityBits2) {
dataUsedBits = usedBits;
break;
}
if (version >= maxVersion)
throw new RangeError("Data too long");
}
for (const newEcl of [Ecc.MEDIUM, Ecc.QUARTILE, Ecc.HIGH])
boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8 && (ecl = newEcl);
const bb = [];
for (const seg of segs) {
appendBits(seg.mode.modeBits, 4, bb), appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb);
for (const b of seg.getData()) bb.push(b);
}
assert(bb.length == dataUsedBits);
const dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8;
assert(bb.length <= dataCapacityBits), appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb), appendBits(0, (8 - bb.length % 8) % 8, bb), assert(bb.length % 8 == 0);
for (let padByte = 236; bb.length < dataCapacityBits; padByte ^= 253) appendBits(padByte, 8, bb);
const dataCodewords = [];
for (; dataCodewords.length * 8 < bb.length; ) dataCodewords.push(0);
return bb.forEach((b, i) => dataCodewords[i >>> 3] |= b << 7 - (i & 7)), new QrCode(version, ecl, dataCodewords, mask);
}
/*-- Fields --*/
// The width and height of this QR Code, measured in modules, between
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
// Even if a QR Code is created with automatic masking requested (mask = -1),
// the resulting object still has a mask value between 0 and 7.
// The modules of this QR Code (false = light, true = dark).
// Immutable after constructor finishes. Accessed through getModule().
modules = [];
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
isFunction = [];
// The version number of this QR Code, which is between 1 and 40 (inclusive).
// This determines the size of this barcode.
// The error correction level used in this QR Code.
/*-- Constructor (low level) and fields --*/
// Creates a new QR Code with the given version number,
// error correction level, data codeword bytes, and mask number.
// This is a low-level API that most users should not use directly.
// A mid-level API is the encodeSegments() function.
constructor(version, errorCorrectionLevel, dataCodewords, msk) {
if (this.version = version, this.errorCorrectionLevel = errorCorrectionLevel, version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION) throw new RangeError("Version value out of range");
if (msk < -1 || msk > 7) throw new RangeError("Mask value out of range");
this.size = version * 4 + 17;
const row = [];
for (let i = 0; i < this.size; i++) row.push(!1);
for (let i = 0; i < this.size; i++)
this.modules.push(row.slice()), this.isFunction.push(row.slice());
this.drawFunctionPatterns();
const allCodewords = this.addEccAndInterleave(dataCodewords);
if (this.drawCodewords(allCodewords), msk == -1) {
let minPenalty = 1e9;
for (let i = 0; i < 8; i++) {
this.applyMask(i), this.drawFormatBits(i);
const penalty = this.getPenaltyScore();
penalty < minPenalty && (msk = i, minPenalty = penalty), this.applyMask(i);
}
}
assert(0 <= msk && msk <= 7), this.mask = msk, this.applyMask(msk), this.drawFormatBits(msk), this.isFunction = [];
}
/*-- Accessor methods --*/
// Returns the color of the module (pixel) at the given coordinates, which is false
// for light or true for dark. The top left corner has the coordinates (x=0, y=0).
// If the given coordinates are out of bounds, then false (light) is returned.
getModule(x, y) {
return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x];
}
// Modified to expose modules for easy access
getModules() {
return this.modules;
}
/*-- Private helper methods for constructor: Drawing function modules --*/
// Reads this object's version field, and draws and marks all function modules.
drawFunctionPatterns() {
for (let i = 0; i < this.size; i++)
this.setFunctionModule(6, i, i % 2 == 0), this.setFunctionModule(i, 6, i % 2 == 0);
this.drawFinderPattern(3, 3), this.drawFinderPattern(this.size - 4, 3), this.drawFinderPattern(3, this.size - 4);
const alignPatPos = this.getAlignmentPatternPositions(), numAlign = alignPatPos.length;
for (let i = 0; i < numAlign; i++)
for (let j = 0; j < numAlign; j++)
i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0 || this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]);
this.drawFormatBits(0), this.drawVersion();
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
drawFormatBits(mask) {
const data = this.errorCorrectionLevel.formatBits << 3 | mask;
let rem = data;
for (let i = 0; i < 10; i++) rem = rem << 1 ^ (rem >>> 9) * 1335;
const bits = (data << 10 | rem) ^ 21522;
assert(bits >>> 15 == 0);
for (let i = 0; i <= 5; i++) this.setFunctionModule(8, i, getBit(bits, i));
this.setFunctionModule(8, 7, getBit(bits, 6)), this.setFunctionModule(8, 8, getBit(bits, 7)), this.setFunctionModule(7, 8, getBit(bits, 8));
for (let i = 9; i < 15; i++) this.setFunctionModule(14 - i, 8, getBit(bits, i));
for (let i = 0; i < 8; i++) this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i));
for (let i = 8; i < 15; i++) this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i));
this.setFunctionModule(8, this.size - 8, !0);
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
drawVersion() {
if (this.version < 7) return;
let rem = this.version;
for (let i = 0; i < 12; i++) rem = rem << 1 ^ (rem >>> 11) * 7973;
const bits = this.version << 12 | rem;
assert(bits >>> 18 == 0);
for (let i = 0; i < 18; i++) {
const color = getBit(bits, i), a = this.size - 11 + i % 3, b = Math.floor(i / 3);
this.setFunctionModule(a, b, color), this.setFunctionModule(b, a, color);
}
}
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
drawFinderPattern(x, y) {
for (let dy = -4; dy <= 4; dy++)
for (let dx = -4; dx <= 4; dx++) {
const dist = Math.max(Math.abs(dx), Math.abs(dy)), xx = x + dx, yy = y + dy;
0 <= xx && xx < this.size && 0 <= yy && yy < this.size && this.setFunctionModule(xx, yy, dist != 2 && dist != 4);
}
}
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
drawAlignmentPattern(x, y) {
for (let dy = -2; dy <= 2; dy++)
for (let dx = -2; dx <= 2; dx++) this.setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1);
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
setFunctionModule(x, y, isDark) {
this.modules[y][x] = isDark, this.isFunction[y][x] = !0;
}
/*-- Private helper methods for constructor: Codewords and masking --*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
addEccAndInterleave(data) {
const ver = this.version, ecl = this.errorCorrectionLevel;
if (data.length != QrCode.getNumDataCodewords(ver, ecl)) throw new RangeError("Invalid argument");
const numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver], blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver], rawCodewords = Math.floor(QrCode.getNumRawDataModules(ver) / 8), numShortBlocks = numBlocks - rawCodewords % numBlocks, shortBlockLen = Math.floor(rawCodewords / numBlocks), blocks = [], rsDiv = QrCode.reedSolomonComputeDivisor(blockEccLen);
for (let i = 0, k = 0; i < numBlocks; i++) {
const dat = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1));
k += dat.length;
const ecc = QrCode.reedSolomonComputeRemainder(dat, rsDiv);
i < numShortBlocks && dat.push(0), blocks.push(dat.concat(ecc));
}
const result = [];
for (let i = 0; i < blocks[0].length; i++)
blocks.forEach((block, j) => {
(i != shortBlockLen - blockEccLen || j >= numShortBlocks) && result.push(block[i]);
});
return assert(result.length == rawCodewords), result;
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
drawCodewords(data) {
if (data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8)) throw new RangeError("Invalid argument");
let i = 0;
for (let right = this.size - 1; right >= 1; right -= 2) {
right == 6 && (right = 5);
for (let vert = 0; vert < this.size; vert++)
for (let j = 0; j < 2; j++) {
const x = right - j, y = right + 1 & 2 ? vert : this.size - 1 - vert;
!this.isFunction[y][x] && i < data.length * 8 && (this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)), i++);
}
}
assert(i == data.length * 8);
}
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling applyMask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
applyMask(mask) {
if (mask < 0 || mask > 7) throw new RangeError("Mask value out of range");
for (let y = 0; y < this.size; y++)
for (let x = 0; x < this.size; x++) {
let invert;
switch (mask) {
case 0:
invert = (x + y) % 2 == 0;
break;
case 1:
invert = y % 2 == 0;
break;
case 2:
invert = x % 3 == 0;
break;
case 3:
invert = (x + y) % 3 == 0;
break;
case 4:
invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0;
break;
case 5:
invert = x * y % 2 + x * y % 3 == 0;
break;
case 6:
invert = (x * y % 2 + x * y % 3) % 2 == 0;
break;
case 7:
invert = ((x + y) % 2 + x * y % 3) % 2 == 0;
break;
default:
throw new Error("Unreachable");
}
!this.isFunction[y][x] && invert && (this.modules[y][x] = !this.modules[y][x]);
}
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
getPenaltyScore() {
let result = 0;
for (let y = 0; y < this.size; y++) {
let runColor = !1, runX = 0;
const runHistory = [0, 0, 0, 0, 0, 0, 0];
for (let x = 0; x < this.size; x++)
this.modules[y][x] == runColor ? (runX++, runX == 5 ? result += QrCode.PENALTY_N1 : runX > 5 && result++) : (this.finderPenaltyAddHistory(runX, runHistory), runColor || (result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3), runColor = this.modules[y][x], runX = 1);
result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * QrCode.PENALTY_N3;
}
for (let x = 0; x < this.size; x++) {
let runColor = !1, runY = 0;
const runHistory = [0, 0, 0, 0, 0, 0, 0];
for (let y = 0; y < this.size; y++)
this.modules[y][x] == runColor ? (runY++, runY == 5 ? result += QrCode.PENALTY_N1 : runY > 5 && result++) : (this.finderPenaltyAddHistory(runY, runHistory), runColor || (result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3), runColor = this.modules[y][x], runY = 1);
result += this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) * QrCode.PENALTY_N3;
}
for (let y = 0; y < this.size - 1; y++)
for (let x = 0; x < this.size - 1; x++) {
const color = this.modules[y][x];
color == this.modules[y][x + 1] && color == this.modules[y + 1][x] && color == this.modules[y + 1][x + 1] && (result += QrCode.PENALTY_N2);
}
let dark = 0;
for (const row of this.modules) dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark);
const total = this.size * this.size, k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1;
return assert(0 <= k && k <= 9), result += k * QrCode.PENALTY_N4, assert(0 <= result && result <= 2568888), result;
}
/*-- Private helper functions --*/
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of integers.
getAlignmentPatternPositions() {
if (this.version == 1) return [];
const numAlign = Math.floor(this.version / 7) + 2, step = this.version == 32 ? 26 : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2, result = [6];
for (let pos = this.size - 7; result.length < numAlign; pos -= step) result.splice(1, 0, pos);
return result;
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
static getNumRawDataModules(ver) {
if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION) throw new RangeError("Version number out of range");
let result = (16 * ver + 128) * ver + 64;
if (ver >= 2) {
const numAlign = Math.floor(ver / 7) + 2;
result -= (25 * numAlign - 10) * numAlign - 55, ver >= 7 && (result -= 36);
}
return assert(208 <= result && result <= 29648), result;
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
static getNumDataCodewords(ver, ecl) {
return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] * QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
}
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
static reedSolomonComputeDivisor(degree) {
if (degree < 1 || degree > 255) throw new RangeError("Degree out of range");
const result = [];
for (let i = 0; i < degree - 1; i++) result.push(0);
result.push(1);
let root = 1;
for (let i = 0; i < degree; i++) {
for (let j = 0; j < result.length; j++)
result[j] = QrCode.reedSolomonMultiply(result[j], root), j + 1 < result.length && (result[j] ^= result[j + 1]);
root = QrCode.reedSolomonMultiply(root, 2);
}
return result;
}
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
static reedSolomonComputeRemainder(data, divisor) {
const result = divisor.map((_) => 0);
for (const b of data) {
const factor = b ^ result.shift();
result.push(0), divisor.forEach((coef, i) => result[i] ^= QrCode.reedSolomonMultiply(coef, factor));
}
return result;
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
static reedSolomonMultiply(x, y) {
if (x >>> 8 || y >>> 8) throw new RangeError("Byte out of range");
let z = 0;
for (let i = 7; i >= 0; i--)
z = z << 1 ^ (z >>> 7) * 285, z ^= (y >>> i & 1) * x;
return assert(z >>> 8 == 0), z;
}
// Can only be called immediately after a light run is added, and
// returns either 0, 1, or 2. A helper function for getPenaltyScore().
finderPenaltyCountPatterns(runHistory) {
const n = runHistory[1];
assert(n <= this.size * 3);
const core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
}
// Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
finderPenaltyTerminateAndCount(currentRunColor, currentRunLength, runHistory) {
return currentRunColor && (this.finderPenaltyAddHistory(currentRunLength, runHistory), currentRunLength = 0), currentRunLength += this.size, this.finderPenaltyAddHistory(currentRunLength, runHistory), this.finderPenaltyCountPatterns(runHistory);
}
// Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
finderPenaltyAddHistory(currentRunLength, runHistory) {
runHistory[0] == 0 && (currentRunLength += this.size), runHistory.pop(), runHistory.unshift(currentRunLength);
}
/*-- Constants and tables --*/
// The minimum version number supported in the QR Code Model 2 standard.
static MIN_VERSION = 1;
// The maximum version number supported in the QR Code Model 2 standard.
static MAX_VERSION = 40;
// For use in getPenaltyScore(), when evaluating which mask is best.
static PENALTY_N1 = 3;
static PENALTY_N2 = 3;
static PENALTY_N3 = 40;
static PENALTY_N4 = 10;
static ECC_CODEWORDS_PER_BLOCK = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
// Low
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28],
// Medium
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
// Quartile
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30]
// High
];
static NUM_ERROR_CORRECTION_BLOCKS = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25],
// Low
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49],
// Medium
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68],
// Quartile
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81]
// High
];
}
function appendBits(val, len, bb) {
if (len < 0 || len > 31 || val >>> len) throw new RangeError("Value out of range");
for (let i = len - 1; i >= 0; i--) bb.push(val >>> i & 1);
}
function getBit(x, i) {
return (x >>> i & 1) != 0;
}
function assert(cond) {
if (!cond) throw new Error("Assertion error");
}
class QrSegment {
/*-- Static factory functions (mid level) --*/
// Returns a segment representing the given binary data encoded in
// byte mode. All input byte arrays are acceptable. Any text string
// can be converted to UTF-8 bytes and encoded as a byte mode segment.
static makeBytes(data) {
const bb = [];
for (const b of data) appendBits(b, 8, bb);
return new QrSegment(Mode.BYTE, data.length, bb);
}
// Returns a segment representing the given string of decimal digits encoded in numeric mode.
static makeNumeric(digits) {
if (!QrSegment.isNumeric(digits)) throw new RangeError("String contains non-numeric characters");
const bb = [];
for (let i = 0; i < digits.length; ) {
const n = Math.min(digits.length - i, 3);
appendBits(parseInt(digits.substring(i, i + n), 10), n * 3 + 1, bb), i += n;
}
return new QrSegment(Mode.NUMERIC, digits.length, bb);
}
// Returns a segment representing the given text string encoded in alphanumeric mode.
// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
static makeAlphanumeric(text) {
if (!QrSegment.isAlphanumeric(text)) throw new RangeError("String contains unencodable characters in alphanumeric mode");
const bb = [];
let i;
for (i = 0; i + 2 <= text.length; i += 2) {
let temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45;
temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)), appendBits(temp, 11, bb);
}
return i < text.length && appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb), new QrSegment(Mode.ALPHANUMERIC, text.length, bb);
}
// Returns a new mutable list of zero or more segments to represent the given Unicode text string.
// The result may use various segment modes and switch modes to optimize the length of the bit stream.
static makeSegments(text) {
return text == "" ? [] : QrSegment.isNumeric(text) ? [QrSegment.makeNumeric(text)] : QrSegment.isAlphanumeric(text) ? [QrSegment.makeAlphanumeric(text)] : [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))];
}
// Returns a segment representing an Extended Channel Interpretation
// (ECI) designator with the given assignment value.
static makeEci(assignVal) {
const bb = [];
if (assignVal < 0) throw new RangeError("ECI assignment value out of range");
if (assignVal < 128) appendBits(assignVal, 8, bb);
else if (assignVal < 16384)
appendBits(2, 2, bb), appendBits(assignVal, 14, bb);
else if (assignVal < 1e6)
appendBits(6, 3, bb), appendBits(assignVal, 21, bb);
else throw new RangeError("ECI assignment value out of range");
return new QrSegment(Mode.ECI, 0, bb);
}
// Tests whether the given string can be encoded as a segment in numeric mode.
// A string is encodable iff each character is in the range 0 to 9.
static isNumeric(text) {
return QrSegment.NUMERIC_REGEX.test(text);
}
// Tests whether the given string can be encoded as a segment in alphanumeric mode.
// A string is encodable iff each character is in the following set: 0 to 9, A to Z
// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
static isAlphanumeric(text) {
return QrSegment.ALPHANUMERIC_REGEX.test(text);
}
// The mode indicator of this segment.
// The length of this segment's unencoded data. Measured in characters for
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
// Always zero or positive. Not the same as the data's bit length.
// The data bits of this segment. Accessed through getData().
/*-- Constructor (low level) and fields --*/
// Creates a new QR Code segment with the given attributes and data.
// The character count (numChars) must agree with the mode and the bit buffer length,
// but the constraint isn't checked. The given bit buffer is cloned and stored.
constructor(mode, numChars, bitData) {
if (this.mode = mode, this.numChars = numChars, numChars < 0) throw new RangeError("Invalid argument");
this.bitData = bitData.slice();
}
/*-- Methods --*/
// Returns a new copy of the data bits of this segment.
getData() {
return this.bitData.slice();
}
// (Package-private) Calculates and returns the number of bits needed to encode the given segments at
// the given version. The result is infinity if a segment has too many characters to fit its length field.
static getTotalBits(segs, version) {
let result = 0;
for (const seg of segs) {
const ccbits = seg.mode.numCharCountBits(version);
if (seg.numChars >= 1 << ccbits) return 1 / 0;
result += 4 + ccbits + seg.bitData.length;
}
return result;
}
// Returns a new array of bytes representing the given string encoded in UTF-8.
static toUtf8ByteArray(str) {
str = encodeURI(str);
const result = [];
for (let i = 0; i < str.length; i++)
str.charAt(i) != "%" ? result.push(str.charCodeAt(i)) : (result.push(parseInt(str.substring(i + 1, i + 3), 16)), i += 2);
return result;
}
/*-- Constants --*/
// Describes precisely all strings that are encodable in numeric mode.
static NUMERIC_REGEX = /^[0-9]*$/;
// Describes precisely all strings that are encodable in alphanumeric mode.
static ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+./:-]*$/;
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
static ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
}
class Ecc {
/*-- Constants --*/
static LOW = new Ecc(0, 1);
// The QR Code can tolerate about 7% erroneous codewords
static MEDIUM = new Ecc(1, 0);
// The QR Code can tolerate about 15% erroneous codewords
static QUARTILE = new Ecc(2, 3);
// The QR Code can tolerate about 25% erroneous codewords
static HIGH = new Ecc(3, 2);
// The QR Code can tolerate about 30% erroneous codewords
// In the range 0 to 3 (unsigned 2-bit integer).
// (Package-private) In the range 0 to 3 (unsigned 2-bit integer).
/*-- Constructor and fields --*/
constructor(ordinal, formatBits) {
this.ordinal = ordinal, this.formatBits = formatBits;
}
}
class Mode {
/*-- Constants --*/
static NUMERIC = new Mode(1, [10, 12, 14]);
static ALPHANUMERIC = new Mode(2, [9, 11, 13]);
static BYTE = new Mode(4, [8, 16, 16]);
static KANJI = new Mode(8, [8, 10, 12]);
static ECI = new Mode(7, [0, 0, 0]);
// The mode indicator bits, which is a uint4 value (range 0 to 15).
// Number of character count bits for three different version ranges.
/*-- Constructor and fields --*/
constructor(modeBits, numBitsCharCount) {
this.modeBits = modeBits, this.numBitsCharCount = numBitsCharCount;
}
/*-- Method --*/
// (Package-private) Returns the bit width of the character count field for a segment in
// this mode in a QR Code at the given version number. The result is in the range [0, 16].
numCharCountBits(ver) {
return this.numBitsCharCount[Math.floor((ver + 7) / 17)];
}
}
const ERROR_LEVEL_MAP = {
L: Ecc.LOW,
M: Ecc.MEDIUM,
Q: Ecc.QUARTILE,
H: Ecc.HIGH
}, DEFAULT_SIZE = 128, DEFAULT_LEVEL = "L", DEFAULT_FGCOLOR = "#000000", DEFAULT_INCLUDEMARGIN = !1, DEFAULT_MINVERSION = 1, SPEC_MARGIN_SIZE = 4, DEFAULT_MARGIN_SIZE = 0;
function generatePath(modules, margin = 0) {
const ops = [];
return modules.forEach(function(row, y) {
let start = null;
row.forEach(function(cell, x) {
if (!cell && start !== null) {
ops.push(`M${start + margin} ${y + margin}h${x - start}v1H${start + margin}z`), start = null;
return;
}
if (x === row.length - 1) {
if (!cell)
return;
start === null ? ops.push(`M${x + margin},${y + margin} h1v1H${x + margin}z`) : ops.push(`M${start + margin},${y + margin} h${x + 1 - start}v1H${start + margin}z`);
return;
}
cell && start === null && (start = x);
});
}), ops.join("");
}
function excavateModules(modules, excavation) {
return modules.slice().map((row, y) => y < excavation.y || y >= excavation.y + excavation.h ? row : row.map((cell, x) => x < excavation.x || x >= excavation.x + excavation.w ? cell : !1));
}
function getImageSettings(cells, size, margin, logoSize) {
if (!logoSize)
return null;
const scale = (cells.length + margin * 2) / size, w = logoSize * scale, h = logoSize * scale, x = cells.length / 2 - w / 2, y = cells.length / 2 - h / 2, floorX = Math.floor(x), floorY = Math.floor(y), ceilW = Math.ceil(w + x - floorX), ceilH = Math.ceil(h + y - floorY);
return {
x,
y,
h,
w,
excavation: {
x: floorX,
y: floorY,
w: ceilW,
h: ceilH
}
};
}
function getMarginSize(includeMargin, marginSize) {
return marginSize != null ? Math.max(Math.floor(marginSize), 0) : includeMargin ? SPEC_MARGIN_SIZE : DEFAULT_MARGIN_SIZE;
}
function useQRCode({
value,
level,
minVersion,
includeMargin,
marginSize,
logoSize,
size
}) {
const qrcode = useMemo(() => {
const segments = QrSegment.makeSegments(value);
return QrCode.encodeSegments(segments, ERROR_LEVEL_MAP[level], minVersion);
}, [value, level, minVersion]), {
cells: cells_0,
margin: margin_0,
numCells: numCells_0,
calculatedImageSettings: calculatedImageSettings_0
} = useMemo(() => {
const cells = qrcode.getModules(), margin = getMarginSize(includeMargin, marginSize), numCells = cells.length + margin * 2, calculatedImageSettings = getImageSettings(cells, size, margin, logoSize);
return {
cells,
margin,
numCells,
calculatedImageSettings
};
}, [qrcode, size, logoSize, includeMargin, marginSize]);
return {
qrcode,
margin: margin_0,
cells: cells_0,
numCells: numCells_0,
calculatedImageSettings: calculatedImageSettings_0
};
}
function QRCodeSVGComponent(props) {
const {
value,
size = DEFAULT_SIZE,
level = DEFAULT_LEVEL,
color = DEFAULT_FGCOLOR,
minVersion = DEFAULT_MINVERSION,
title,
logoSize
} = props, marginSize = void 0, {
margin,
cells,
numCells,
calculatedImageSettings
} = useQRCode({
value,
level,
minVersion,
includeMargin: DEFAULT_INCLUDEMARGIN,
marginSize,
logoSize,
size
}), cellsToDraw = useMemo(() => logoSize && calculatedImageSettings?.excavation ? excavateModules(cells, calculatedImageSettings.excavation) : cells, [calculatedImageSettings?.excavation, cells, logoSize]), fgPath = generatePath(cellsToDraw, margin);
return /* @__PURE__ */ jsxs("svg", { height: size, width: size, viewBox: `0 0 ${numCells} ${numCells}`, role: "img", children: [
!!title && /* @__PURE__ */ jsx("title", { children: title }),
/* @__PURE__ */ jsx(motion.path, { fill: color, d: fgPath, shapeRendering: "crispEdges", initial: {
opacity: 0
}, animate: {
opacity: 2
}, exit: {
opacity: -1
} })
] });
}
const QRCodeSVG = memo(QRCodeSVGComponent);
QRCodeSVG.displayName = "Memo(QRCodeSVG)";
export {
QRCodeSVG as default
};
//# sourceMappingURL=QRCodeSVG.mjs.map