ruvector-extensions
Version:
Advanced features for ruvector: embeddings, UI, exports, temporal tracking, and persistence
585 lines (499 loc) • 18.3 kB
text/typescript
/**
* Graph Export Examples
*
* Demonstrates how to use the graph export module with various formats
* and configurations.
*/
import {
buildGraphFromEntries,
exportGraph,
exportToGraphML,
exportToGEXF,
exportToNeo4j,
exportToD3,
exportToNetworkX,
GraphMLStreamExporter,
D3StreamExporter,
type Graph,
type GraphNode,
type GraphEdge,
type VectorEntry,
type ExportOptions
} from '../src/exporters.js';
import { createWriteStream } from 'fs';
import { writeFile } from 'fs/promises';
// ============================================================================
// Example 1: Basic Graph Export to Multiple Formats
// ============================================================================
export async function example1_basicExport() {
console.log('\n=== Example 1: Basic Graph Export ===\n');
// Sample vector entries (embeddings from a document collection)
const entries: VectorEntry[] = [
{
id: 'doc1',
vector: [0.1, 0.2, 0.3, 0.4],
metadata: { title: 'Introduction to AI', category: 'AI', year: 2023 }
},
{
id: 'doc2',
vector: [0.15, 0.25, 0.35, 0.42],
metadata: { title: 'Machine Learning Basics', category: 'ML', year: 2023 }
},
{
id: 'doc3',
vector: [0.8, 0.1, 0.05, 0.05],
metadata: { title: 'History of Rome', category: 'History', year: 2022 }
},
{
id: 'doc4',
vector: [0.12, 0.22, 0.32, 0.38],
metadata: { title: 'Neural Networks', category: 'AI', year: 2024 }
}
];
// Build graph from vector entries
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 2,
threshold: 0.5,
includeVectors: false,
includeMetadata: true
});
console.log(`Graph built: ${graph.nodes.length} nodes, ${graph.edges.length} edges\n`);
// Export to different formats
const formats = ['graphml', 'gexf', 'neo4j', 'd3', 'networkx'] as const;
for (const format of formats) {
const result = exportGraph(graph, format, {
graphName: 'Document Similarity Network',
graphDescription: 'Similarity network of document embeddings',
includeMetadata: true
});
console.log(`${format.toUpperCase()}:`);
console.log(` Nodes: ${result.nodeCount}, Edges: ${result.edgeCount}`);
if (typeof result.data === 'string') {
console.log(` Size: ${result.data.length} characters`);
console.log(` Preview: ${result.data.substring(0, 100)}...\n`);
} else {
console.log(` Type: JSON object`);
console.log(` Preview: ${JSON.stringify(result.data).substring(0, 100)}...\n`);
}
}
}
// ============================================================================
// Example 2: Export to GraphML with Full Configuration
// ============================================================================
export async function example2_graphMLExport() {
console.log('\n=== Example 2: GraphML Export ===\n');
const entries: VectorEntry[] = [
{
id: 'vec1',
vector: [1.0, 0.0, 0.0],
metadata: { label: 'Vector 1', type: 'test', score: 0.95 }
},
{
id: 'vec2',
vector: [0.9, 0.1, 0.0],
metadata: { label: 'Vector 2', type: 'test', score: 0.87 }
},
{
id: 'vec3',
vector: [0.0, 1.0, 0.0],
metadata: { label: 'Vector 3', type: 'control', score: 0.92 }
}
];
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 2,
threshold: 0.0,
includeVectors: true, // Include vectors in export
includeMetadata: true
});
const graphml = exportToGraphML(graph, {
graphName: 'Test Vectors',
includeVectors: true
});
console.log('GraphML Export:');
console.log(graphml);
// Save to file
await writeFile('examples/output/graph.graphml', graphml);
console.log('\nSaved to: examples/output/graph.graphml');
}
// ============================================================================
// Example 3: Export to GEXF for Gephi Visualization
// ============================================================================
export async function example3_gephiExport() {
console.log('\n=== Example 3: GEXF Export for Gephi ===\n');
// Simulate a larger network
const entries: VectorEntry[] = [];
for (let i = 0; i < 20; i++) {
entries.push({
id: `node${i}`,
vector: Array(128).fill(0).map(() => Math.random()),
metadata: {
label: `Node ${i}`,
cluster: Math.floor(i / 5),
importance: Math.random()
}
});
}
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 3,
threshold: 0.7,
includeMetadata: true
});
const gexf = exportToGEXF(graph, {
graphName: 'Large Network',
graphDescription: 'Network with 20 nodes and cluster information'
});
await writeFile('examples/output/network.gexf', gexf);
console.log('GEXF file created: examples/output/network.gexf');
console.log('Import this file into Gephi for visualization!');
}
// ============================================================================
// Example 4: Export to Neo4j and Execute Queries
// ============================================================================
export async function example4_neo4jExport() {
console.log('\n=== Example 4: Neo4j Export ===\n');
const entries: VectorEntry[] = [
{
id: 'person1',
vector: [0.5, 0.5],
metadata: { name: 'Alice', role: 'Engineer', experience: 5 }
},
{
id: 'person2',
vector: [0.52, 0.48],
metadata: { name: 'Bob', role: 'Engineer', experience: 3 }
},
{
id: 'person3',
vector: [0.1, 0.9],
metadata: { name: 'Charlie', role: 'Manager', experience: 10 }
}
];
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 2,
threshold: 0.5,
includeMetadata: true
});
const cypher = exportToNeo4j(graph, {
includeMetadata: true
});
console.log('Neo4j Cypher Queries:');
console.log(cypher);
await writeFile('examples/output/import.cypher', cypher);
console.log('\nSaved to: examples/output/import.cypher');
console.log('\nTo import into Neo4j:');
console.log(' 1. Open Neo4j Browser');
console.log(' 2. Copy and paste the Cypher queries');
console.log(' 3. Execute to create the graph');
}
// ============================================================================
// Example 5: Export to D3.js for Web Visualization
// ============================================================================
export async function example5_d3Export() {
console.log('\n=== Example 5: D3.js Export ===\n');
const entries: VectorEntry[] = [
{
id: 'central',
vector: [0.5, 0.5],
metadata: { name: 'Central Node', size: 20, color: '#ff0000' }
},
{
id: 'node1',
vector: [0.6, 0.5],
metadata: { name: 'Node 1', size: 10, color: '#00ff00' }
},
{
id: 'node2',
vector: [0.4, 0.5],
metadata: { name: 'Node 2', size: 10, color: '#0000ff' }
},
{
id: 'node3',
vector: [0.5, 0.6],
metadata: { name: 'Node 3', size: 10, color: '#ffff00' }
}
];
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 3,
threshold: 0.0,
includeMetadata: true
});
const d3Data = exportToD3(graph, {
includeMetadata: true
});
console.log('D3.js Data:');
console.log(JSON.stringify(d3Data, null, 2));
await writeFile('examples/output/d3-graph.json', JSON.stringify(d3Data, null, 2));
console.log('\nSaved to: examples/output/d3-graph.json');
// Generate simple HTML visualization
const html = `
<!DOCTYPE html>
<html>
<head>
<title>D3.js Force Graph</title>
<script src="https://d3js.org/d3.v7.min.js"></script>
<style>
body { margin: 0; font-family: Arial, sans-serif; }
svg { border: 1px solid #ccc; }
.links line { stroke: #999; stroke-opacity: 0.6; }
.nodes circle { stroke: #fff; stroke-width: 1.5px; }
.labels { font-size: 10px; pointer-events: none; }
</style>
</head>
<body>
<svg width="800" height="600"></svg>
<script>
const graphData = ${JSON.stringify(d3Data)};
const svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height");
const simulation = d3.forceSimulation(graphData.nodes)
.force("link", d3.forceLink(graphData.links).id(d => d.id).distance(100))
.force("charge", d3.forceManyBody().strength(-300))
.force("center", d3.forceCenter(width / 2, height / 2));
const link = svg.append("g")
.attr("class", "links")
.selectAll("line")
.data(graphData.links)
.enter().append("line")
.attr("stroke-width", d => Math.sqrt(d.value) * 2);
const node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(graphData.nodes)
.enter().append("circle")
.attr("r", d => d.size || 5)
.attr("fill", d => d.color || "#69b3a2")
.call(d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended));
const label = svg.append("g")
.attr("class", "labels")
.selectAll("text")
.data(graphData.nodes)
.enter().append("text")
.text(d => d.name)
.attr("dx", 12)
.attr("dy", 4);
simulation.on("tick", () => {
link.attr("x1", d => d.source.x)
.attr("y1", d => d.source.y)
.attr("x2", d => d.target.x)
.attr("y2", d => d.target.y);
node.attr("cx", d => d.x)
.attr("cy", d => d.y);
label.attr("x", d => d.x)
.attr("y", d => d.y);
});
function dragstarted(event, d) {
if (!event.active) simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(event, d) {
d.fx = event.x;
d.fy = event.y;
}
function dragended(event, d) {
if (!event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
</script>
</body>
</html>`;
await writeFile('examples/output/d3-visualization.html', html);
console.log('Created HTML visualization: examples/output/d3-visualization.html');
console.log('Open this file in a web browser to see the interactive graph!');
}
// ============================================================================
// Example 6: Export to NetworkX for Python Analysis
// ============================================================================
export async function example6_networkXExport() {
console.log('\n=== Example 6: NetworkX Export ===\n');
const entries: VectorEntry[] = [];
for (let i = 0; i < 10; i++) {
entries.push({
id: `node_${i}`,
vector: Array(64).fill(0).map(() => Math.random()),
metadata: { degree: i, centrality: Math.random() }
});
}
const graph = buildGraphFromEntries(entries, {
maxNeighbors: 3,
threshold: 0.6
});
const nxData = exportToNetworkX(graph, {
includeMetadata: true
});
await writeFile('examples/output/networkx-graph.json', JSON.stringify(nxData, null, 2));
console.log('NetworkX JSON saved to: examples/output/networkx-graph.json');
// Generate Python script
const pythonScript = `
import json
import networkx as nx
import matplotlib.pyplot as plt
# Load the graph
with open('networkx-graph.json', 'r') as f:
data = json.load(f)
G = nx.node_link_graph(data)
# Calculate centrality measures
degree_centrality = nx.degree_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
print(f"Graph has {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")
print(f"\\nTop 5 nodes by degree centrality:")
sorted_nodes = sorted(degree_centrality.items(), key=lambda x: x[1], reverse=True)[:5]
for node, centrality in sorted_nodes:
print(f" {node}: {centrality:.4f}")
# Visualize
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=0.5, iterations=50)
nx.draw(G, pos,
node_color=[degree_centrality[node] for node in G.nodes()],
node_size=[v * 1000 for v in degree_centrality.values()],
cmap=plt.cm.plasma,
with_labels=True,
font_size=8,
font_weight='bold',
edge_color='gray',
alpha=0.7)
plt.title('Network Graph Visualization')
plt.colorbar(plt.cm.ScalarMappable(cmap=plt.cm.plasma), label='Degree Centrality')
plt.savefig('network-visualization.png', dpi=300, bbox_inches='tight')
print("\\nVisualization saved to: network-visualization.png")
`;
await writeFile('examples/output/analyze_network.py', pythonScript);
console.log('Python analysis script saved to: examples/output/analyze_network.py');
console.log('\nTo analyze in Python:');
console.log(' cd examples/output');
console.log(' pip install networkx matplotlib');
console.log(' python analyze_network.py');
}
// ============================================================================
// Example 7: Streaming Export for Large Graphs
// ============================================================================
export async function example7_streamingExport() {
console.log('\n=== Example 7: Streaming Export ===\n');
// Simulate a large graph that doesn't fit in memory
console.log('Creating streaming GraphML export...');
const stream = createWriteStream('examples/output/large-graph.graphml');
const exporter = new GraphMLStreamExporter(stream, {
graphName: 'Large Streaming Graph'
});
await exporter.start();
// Add nodes in batches
for (let i = 0; i < 1000; i++) {
const node: GraphNode = {
id: `node${i}`,
label: `Node ${i}`,
attributes: {
batch: Math.floor(i / 100),
value: Math.random()
}
};
await exporter.addNode(node);
if (i % 100 === 0) {
console.log(` Added ${i} nodes...`);
}
}
console.log(' Added 1000 nodes');
// Add edges
let edgeCount = 0;
for (let i = 0; i < 1000; i++) {
for (let j = i + 1; j < Math.min(i + 5, 1000); j++) {
const edge: GraphEdge = {
source: `node${i}`,
target: `node${j}`,
weight: Math.random()
};
await exporter.addEdge(edge);
edgeCount++;
}
}
console.log(` Added ${edgeCount} edges`);
await exporter.end();
stream.close();
console.log('\nStreaming export completed: examples/output/large-graph.graphml');
console.log('This approach works for graphs with millions of nodes!');
}
// ============================================================================
// Example 8: Custom Graph Construction
// ============================================================================
export async function example8_customGraph() {
console.log('\n=== Example 8: Custom Graph Construction ===\n');
// Build a custom graph structure manually
const graph: Graph = {
nodes: [
{ id: 'A', label: 'Root', attributes: { level: 0, type: 'root' } },
{ id: 'B', label: 'Child 1', attributes: { level: 1, type: 'child' } },
{ id: 'C', label: 'Child 2', attributes: { level: 1, type: 'child' } },
{ id: 'D', label: 'Leaf 1', attributes: { level: 2, type: 'leaf' } },
{ id: 'E', label: 'Leaf 2', attributes: { level: 2, type: 'leaf' } }
],
edges: [
{ source: 'A', target: 'B', weight: 1.0, type: 'parent-child' },
{ source: 'A', target: 'C', weight: 1.0, type: 'parent-child' },
{ source: 'B', target: 'D', weight: 0.8, type: 'parent-child' },
{ source: 'C', target: 'E', weight: 0.9, type: 'parent-child' },
{ source: 'B', target: 'C', weight: 0.5, type: 'sibling' }
],
metadata: {
description: 'Hierarchical tree structure',
created: new Date().toISOString()
}
};
// Export to multiple formats
const graphML = exportToGraphML(graph);
const d3Data = exportToD3(graph);
const neo4j = exportToNeo4j(graph);
await writeFile('examples/output/custom-graph.graphml', graphML);
await writeFile('examples/output/custom-graph-d3.json', JSON.stringify(d3Data, null, 2));
await writeFile('examples/output/custom-graph.cypher', neo4j);
console.log('Custom graph exported to:');
console.log(' - examples/output/custom-graph.graphml');
console.log(' - examples/output/custom-graph-d3.json');
console.log(' - examples/output/custom-graph.cypher');
}
// ============================================================================
// Run All Examples
// ============================================================================
export async function runAllExamples() {
console.log('╔═══════════════════════════════════════════════════════╗');
console.log('║ ruvector Graph Export Examples ║');
console.log('╚═══════════════════════════════════════════════════════╝');
// Create output directory
const fs = await import('fs/promises');
try {
await fs.mkdir('examples/output', { recursive: true });
} catch (e) {
// Directory already exists
}
try {
await example1_basicExport();
await example2_graphMLExport();
await example3_gephiExport();
await example4_neo4jExport();
await example5_d3Export();
await example6_networkXExport();
await example7_streamingExport();
await example8_customGraph();
console.log('\n✅ All examples completed successfully!');
console.log('\nGenerated files in examples/output/:');
console.log(' - graph.graphml (GraphML format)');
console.log(' - network.gexf (Gephi format)');
console.log(' - import.cypher (Neo4j queries)');
console.log(' - d3-graph.json (D3.js data)');
console.log(' - d3-visualization.html (Interactive visualization)');
console.log(' - networkx-graph.json (NetworkX format)');
console.log(' - analyze_network.py (Python analysis script)');
console.log(' - large-graph.graphml (Streaming export demo)');
console.log(' - custom-graph.* (Custom graph exports)');
} catch (error) {
console.error('\n❌ Error running examples:', error);
throw error;
}
}
// Run if executed directly
if (import.meta.url === `file://${process.argv[1]}`) {
runAllExamples().catch(console.error);
}