UNPKG

ruv-swarm

Version:

High-performance neural network swarm orchestration in WebAssembly

1,636 lines (1,410 loc) 58.3 kB
/** * Neural Network Manager * Manages per-agent neural networks with WASM integration */ import { createNeuralModel, MODEL_PRESETS } from './neural-models/index.js'; import { NEURAL_PRESETS, getPreset, getCategoryPresets, searchPresetsByUseCase, getRecommendedPreset, validatePresetConfig, } from './neural-models/presets/index.js'; import { COMPLETE_NEURAL_PRESETS, CognitivePatternSelector, NeuralAdaptationEngine, } from './neural-models/neural-presets-complete.js'; import { CognitivePatternEvolution } from './cognitive-pattern-evolution.js'; import { MetaLearningFramework } from './meta-learning-framework.js'; import { NeuralCoordinationProtocol } from './neural-coordination-protocol.js'; import { DAACognition } from './daa-cognition.js'; class NeuralNetworkManager { constructor(wasmLoader) { this.wasmLoader = wasmLoader; this.neuralNetworks = new Map(); // Enhanced capabilities this.cognitiveEvolution = new CognitivePatternEvolution(); this.metaLearning = new MetaLearningFramework(); this.coordinationProtocol = new NeuralCoordinationProtocol(); this.daaCognition = new DAACognition(); // Complete neural presets integration this.cognitivePatternSelector = new CognitivePatternSelector(); this.neuralAdaptationEngine = new NeuralAdaptationEngine(); // Cross-agent memory and knowledge sharing this.sharedKnowledge = new Map(); this.agentInteractions = new Map(); this.collaborativeMemory = new Map(); // Performance tracking and optimization this.performanceMetrics = new Map(); this.adaptiveOptimization = true; this.federatedLearningEnabled = true; this.templates = { deep_analyzer: { layers: [128, 256, 512, 256, 128], activation: 'relu', output_activation: 'sigmoid', dropout: 0.3, }, nlp_processor: { layers: [512, 1024, 512, 256], activation: 'gelu', output_activation: 'softmax', dropout: 0.4, }, reinforcement_learner: { layers: [64, 128, 128, 64], activation: 'tanh', output_activation: 'linear', dropout: 0.2, }, pattern_recognizer: { layers: [256, 512, 1024, 512, 256], activation: 'relu', output_activation: 'sigmoid', dropout: 0.35, }, time_series_analyzer: { layers: [128, 256, 256, 128], activation: 'lstm', output_activation: 'linear', dropout: 0.25, }, transformer_nlp: { modelType: 'transformer', preset: 'base', dimensions: 512, heads: 8, layers: 6, }, cnn_vision: { modelType: 'cnn', preset: 'cifar10', inputShape: [32, 32, 3], outputSize: 10, }, gru_sequence: { modelType: 'gru', preset: 'text_classification', hiddenSize: 256, numLayers: 2, bidirectional: true, }, autoencoder_compress: { modelType: 'autoencoder', preset: 'mnist_compress', bottleneckSize: 32, variational: false, }, gnn_social: { modelType: 'gnn', preset: 'social_network', nodeDimensions: 128, numLayers: 3, }, resnet_classifier: { modelType: 'resnet', preset: 'resnet18', inputDimensions: 784, outputDimensions: 10, }, vae_generator: { modelType: 'vae', preset: 'mnist_vae', latentDimensions: 20, betaKL: 1.0, }, lstm_sequence: { modelType: 'lstm', preset: 'sentiment_analysis', hiddenSize: 256, numLayers: 2, bidirectional: true, }, // Special template for preset-based models preset_model: { modelType: 'preset', // Will be overridden by actual model type usePreset: true, }, // Advanced neural architectures (27+ models) attention_mechanism: { modelType: 'attention', preset: 'multi_head_attention', heads: 8, dimensions: 512, dropoutRate: 0.1, }, diffusion_model: { modelType: 'diffusion', preset: 'denoising_diffusion', timesteps: 1000, betaSchedule: 'cosine', }, neural_ode: { modelType: 'neural_ode', preset: 'continuous_dynamics', solverMethod: 'dopri5', tolerance: 1e-6, }, capsule_network: { modelType: 'capsnet', preset: 'dynamic_routing', primaryCaps: 32, digitCaps: 10, }, spiking_neural: { modelType: 'snn', preset: 'leaky_integrate_fire', neuronModel: 'lif', threshold: 1.0, }, graph_attention: { modelType: 'gat', preset: 'multi_head_gat', attentionHeads: 8, hiddenUnits: 256, }, neural_turing: { modelType: 'ntm', preset: 'differentiable_memory', memorySize: [128, 20], controllerSize: 100, }, memory_network: { modelType: 'memnn', preset: 'end_to_end_memory', memorySlots: 100, hops: 3, }, neural_cellular: { modelType: 'nca', preset: 'growing_patterns', channels: 16, updateRule: 'sobel', }, hypernetwork: { modelType: 'hypernet', preset: 'weight_generation', hyperDim: 512, targetLayers: ['conv1', 'conv2'], }, meta_learning: { modelType: 'maml', preset: 'few_shot_learning', innerLR: 0.01, outerLR: 0.001, innerSteps: 5, }, neural_architecture_search: { modelType: 'nas', preset: 'differentiable_nas', searchSpace: 'mobile_search_space', epochs: 50, }, mixture_of_experts: { modelType: 'moe', preset: 'sparse_expert_routing', numExperts: 8, expertCapacity: 2, }, neural_radiance_field: { modelType: 'nerf', preset: '3d_scene_reconstruction', positionEncoding: 10, directionEncoding: 4, }, wavenet_audio: { modelType: 'wavenet', preset: 'speech_synthesis', dilationChannels: 32, residualChannels: 32, }, pointnet_3d: { modelType: 'pointnet', preset: 'point_cloud_classification', pointFeatures: 3, globalFeatures: 1024, }, neural_baby_ai: { modelType: 'baby_ai', preset: 'instruction_following', vocabSize: 100, instructionLength: 20, }, world_model: { modelType: 'world_model', preset: 'environment_prediction', visionModel: 'vae', memoryModel: 'mdn_rnn', }, flow_based: { modelType: 'normalizing_flow', preset: 'density_estimation', flowType: 'real_nvp', couplingLayers: 8, }, energy_based: { modelType: 'ebm', preset: 'contrastive_divergence', energyFunction: 'mlp', samplingSteps: 100, }, neural_processes: { modelType: 'neural_process', preset: 'function_approximation', latentDim: 128, contextPoints: 10, }, set_transformer: { modelType: 'set_transformer', preset: 'permutation_invariant', inducingPoints: 32, dimensions: 128, }, neural_implicit: { modelType: 'neural_implicit', preset: 'coordinate_networks', coordinateDim: 2, hiddenLayers: 8, }, evolutionary_neural: { modelType: 'evolutionary_nn', preset: 'neuroevolution', populationSize: 50, mutationRate: 0.1, }, quantum_neural: { modelType: 'qnn', preset: 'variational_quantum', qubits: 4, layers: 6, }, optical_neural: { modelType: 'onn', preset: 'photonic_computation', wavelengths: 16, modulators: 'mach_zehnder', }, neuromorphic: { modelType: 'neuromorphic', preset: 'event_driven', spikeEncoding: 'rate', synapticModel: 'stdp', }, }; // Store instances of new neural models this.neuralModels = new Map(); } async createAgentNeuralNetwork(agentId, config = {}) { // Initialize cognitive evolution for this agent await this.cognitiveEvolution.initializeAgent(agentId, config); // Apply meta-learning if enabled if (config.enableMetaLearning) { config = await this.metaLearning.adaptConfiguration(agentId, config); } // Check if this is a new neural model type const template = config.template || 'deep_analyzer'; const templateConfig = this.templates[template]; if (templateConfig && templateConfig.modelType) { // Create new neural model with enhanced capabilities return this.createAdvancedNeuralModel(agentId, template, config); } // Load neural module if not already loaded const neuralModule = await this.wasmLoader.loadModule('neural'); if (!neuralModule || neuralModule.isPlaceholder) { console.warn('Neural network module not available, using simulation'); return this.createSimulatedNetwork(agentId, config); } const { layers = null, activation = 'relu', learningRate = 0.001, optimizer = 'adam', } = config; // Use template or custom layers const networkConfig = layers ? { layers, activation } : this.templates[template]; try { // Create network using WASM module const networkId = neuralModule.exports.create_neural_network( JSON.stringify({ agent_id: agentId, layers: networkConfig.layers, activation: networkConfig.activation, learning_rate: learningRate, optimizer, }), ); const network = new NeuralNetwork(networkId, agentId, networkConfig, neuralModule); this.neuralNetworks.set(agentId, network); return network; } catch (error) { console.error('Failed to create neural network:', error); return this.createSimulatedNetwork(agentId, config); } } createSimulatedNetwork(agentId, config) { const network = new SimulatedNeuralNetwork(agentId, config); this.neuralNetworks.set(agentId, network); return network; } async createAdvancedNeuralModel(agentId, template, customConfig = {}) { const templateConfig = this.templates[template]; if (!templateConfig || !templateConfig.modelType) { throw new Error(`Invalid template: ${template}`); } // Merge template config with custom config const config = { ...templateConfig, ...customConfig, }; // Select cognitive patterns based on model type and task const taskContext = { requiresCreativity: customConfig.requiresCreativity || false, requiresPrecision: customConfig.requiresPrecision || false, requiresAdaptation: customConfig.requiresAdaptation || false, complexity: customConfig.complexity || 'medium', }; const cognitivePatterns = this.cognitivePatternSelector.selectPatternsForPreset( config.modelType, template, taskContext, ); config.cognitivePatterns = cognitivePatterns; // Use preset if specified if (config.preset && MODEL_PRESETS[config.modelType]) { const presetConfig = MODEL_PRESETS[config.modelType][config.preset]; Object.assign(config, presetConfig); } try { // Create the neural model const model = await createNeuralModel(config.modelType, config); // Wrap in a compatible interface const wrappedModel = new AdvancedNeuralNetwork(agentId, model, config); // Enhanced registration with cognitive capabilities this.neuralNetworks.set(agentId, wrappedModel); this.neuralModels.set(agentId, model); // Register with coordination protocol await this.coordinationProtocol.registerAgent(agentId, wrappedModel); // Initialize neural adaptation engine await this.neuralAdaptationEngine.initializeAdaptation(agentId, config.modelType, template); // Initialize performance tracking this.performanceMetrics.set(agentId, { creationTime: Date.now(), modelType: config.modelType, cognitivePatterns: cognitivePatterns || [], adaptationHistory: [], collaborationScore: 0, }); console.log(`Created ${config.modelType} neural network for agent ${agentId} with enhanced cognitive capabilities`); return wrappedModel; } catch (error) { console.error(`Failed to create advanced neural model: ${error}`); return this.createSimulatedNetwork(agentId, config); } } async fineTuneNetwork(agentId, trainingData, options = {}) { const network = this.neuralNetworks.get(agentId); if (!network) { throw new Error(`No neural network found for agent ${agentId}`); } const { epochs = 10, batchSize = 32, learningRate = 0.001, freezeLayers = [], enableCognitiveEvolution = true, enableMetaLearning = true, } = options; // Apply cognitive pattern evolution during training if (enableCognitiveEvolution) { await this.cognitiveEvolution.evolvePatterns(agentId, trainingData); } // Apply meta-learning optimization if (enableMetaLearning) { const optimizedOptions = await this.metaLearning.optimizeTraining(agentId, options); Object.assign(options, optimizedOptions); } // Enhanced training with adaptive optimization const result = await network.train(trainingData, { epochs, batchSize, learningRate, freezeLayers }); // Update performance metrics const metrics = this.performanceMetrics.get(agentId); if (metrics) { const adaptationResult = { timestamp: Date.now(), trainingResult: result, cognitiveGrowth: await this.cognitiveEvolution.assessGrowth(agentId), accuracy: result.accuracy || 0, cognitivePatterns: metrics.cognitivePatterns, performance: result, insights: [], }; metrics.adaptationHistory.push(adaptationResult); // Record adaptation in neural adaptation engine await this.neuralAdaptationEngine.recordAdaptation(agentId, adaptationResult); } return result; } async enableCollaborativeLearning(agentIds, options = {}) { const { strategy = 'federated', syncInterval = 30000, privacyLevel = 'high', enableKnowledgeSharing = true, enableCrossAgentEvolution = true, } = options; const networks = agentIds.map(id => this.neuralNetworks.get(id)).filter(n => n); if (networks.length < 2) { throw new Error('At least 2 neural networks required for collaborative learning'); } // Create enhanced collaborative learning session const session = { id: `collab-${Date.now()}`, networks, agentIds, strategy, syncInterval, privacyLevel, active: true, knowledgeGraph: new Map(), evolutionTracker: new Map(), coordinationMatrix: new Array(agentIds.length).fill(0).map(() => new Array(agentIds.length).fill(0)), }; // Initialize neural coordination protocol await this.coordinationProtocol.initializeSession(session); // Enable cross-agent knowledge sharing if (enableKnowledgeSharing) { await this.enableKnowledgeSharing(agentIds, session); } // Enable cross-agent cognitive evolution if (enableCrossAgentEvolution) { await this.cognitiveEvolution.enableCrossAgentEvolution(agentIds, session); } // Start enhanced synchronization if (strategy === 'federated') { this.startFederatedLearning(session); } else if (strategy === 'knowledge_distillation') { this.startKnowledgeDistillation(session); } else if (strategy === 'neural_coordination') { this.startNeuralCoordination(session); } return session; } startFederatedLearning(session) { const syncFunction = () => { if (!session.active) { return; } // Aggregate gradients from all networks const gradients = session.networks.map(n => n.getGradients()); // Apply privacy-preserving aggregation const aggregatedGradients = this.aggregateGradients(gradients, session.privacyLevel); // Update all networks with aggregated gradients session.networks.forEach(n => n.applyGradients(aggregatedGradients)); // Schedule next sync setTimeout(syncFunction, session.syncInterval); }; // Start synchronization setTimeout(syncFunction, session.syncInterval); } aggregateGradients(gradients, privacyLevel) { // Enhanced aggregation with cognitive pattern preservation const aggregated = {}; const cognitiveWeights = this.cognitiveEvolution.calculateAggregationWeights(gradients); // Privacy levels with advanced secure aggregation let noise = 0; let differentialPrivacy = false; switch (privacyLevel) { case 'high': noise = 0.01; differentialPrivacy = true; break; case 'medium': noise = 0.005; break; case 'low': noise = 0.001; break; } // Cognitive-weighted gradient aggregation gradients.forEach((grad, index) => { const weight = cognitiveWeights[index] || (1 / gradients.length); Object.entries(grad).forEach(([key, value]) => { if (!aggregated[key]) { aggregated[key] = 0; } let aggregatedValue = value * weight; // Apply differential privacy if enabled if (differentialPrivacy) { const sensitivity = this.calculateSensitivity(key, gradients); const laplacianNoise = this.generateLaplacianNoise(sensitivity, noise); aggregatedValue += laplacianNoise; } else { aggregatedValue += (Math.random() - 0.5) * noise; } aggregated[key] += aggregatedValue; }); }); return aggregated; } calculateSensitivity(parameterKey, gradients) { // Calculate L1 sensitivity for differential privacy const values = gradients.map(grad => Math.abs(grad[parameterKey] || 0)); return Math.max(...values) - Math.min(...values); } generateLaplacianNoise(sensitivity, epsilon) { // Generate Laplacian noise for differential privacy const scale = sensitivity / epsilon; const u1 = Math.random(); const u2 = Math.random(); return scale * Math.sign(u1 - 0.5) * Math.log(1 - 2 * Math.abs(u1 - 0.5)); } getNetworkMetrics(agentId) { const network = this.neuralNetworks.get(agentId); if (!network) { return null; } return network.getMetrics(); } saveNetworkState(agentId, filePath) { const network = this.neuralNetworks.get(agentId); if (!network) { throw new Error(`No neural network found for agent ${agentId}`); } return network.save(filePath); } async loadNetworkState(agentId, filePath) { const network = this.neuralNetworks.get(agentId); if (!network) { throw new Error(`No neural network found for agent ${agentId}`); } return network.load(filePath); } // =============================== // PRESET INTEGRATION METHODS // =============================== /** * Create a neural network from a production preset * @param {string} agentId - Agent identifier * @param {string} category - Preset category (nlp, vision, timeseries, graph) * @param {string} presetName - Name of the preset * @param {object} customConfig - Optional custom configuration overrides */ async createAgentFromPreset(agentId, category, presetName, customConfig = {}) { // First check complete neural presets const completePreset = COMPLETE_NEURAL_PRESETS[category]?.[presetName]; if (completePreset) { return this.createAgentFromCompletePreset(agentId, category, presetName, customConfig); } try { const preset = getPreset(category, presetName); validatePresetConfig(preset); console.log(`Creating ${agentId} from preset: ${preset.name}`); console.log(`Expected performance: ${preset.performance.expectedAccuracy} accuracy in ${preset.performance.inferenceTime}`); // Merge preset config with custom overrides const config = { ...preset.config, ...customConfig, modelType: preset.model, presetInfo: { category, presetName, name: preset.name, description: preset.description, useCase: preset.useCase, performance: preset.performance, }, }; return this.createAdvancedNeuralModel(agentId, 'preset_model', config); } catch (error) { console.error(`Failed to create agent from preset: ${error.message}`); throw error; } } /** * Create a neural network from complete preset (27+ models) * @param {string} agentId - Agent identifier * @param {string} modelType - Model type (transformer, cnn, lstm, etc.) * @param {string} presetName - Name of the preset * @param {object} customConfig - Optional custom configuration overrides */ async createAgentFromCompletePreset(agentId, modelType, presetName, customConfig = {}) { const preset = COMPLETE_NEURAL_PRESETS[modelType]?.[presetName]; if (!preset) { throw new Error(`Complete preset not found: ${modelType}/${presetName}`); } console.log(`Creating ${agentId} from complete preset: ${preset.name}`); console.log(`Expected performance: ${preset.performance.expectedAccuracy} accuracy in ${preset.performance.inferenceTime}`); console.log(`Cognitive patterns: ${preset.cognitivePatterns.join(', ')}`); // Get optimized cognitive patterns const taskContext = { requiresCreativity: customConfig.requiresCreativity || false, requiresPrecision: customConfig.requiresPrecision || false, requiresAdaptation: customConfig.requiresAdaptation || false, complexity: customConfig.complexity || 'medium', cognitivePreference: customConfig.cognitivePreference, }; const cognitivePatterns = this.cognitivePatternSelector.selectPatternsForPreset( preset.model, presetName, taskContext, ); // Merge preset config with custom overrides const config = { ...preset.config, ...customConfig, modelType: preset.model, cognitivePatterns, presetInfo: { modelType, presetName, name: preset.name, description: preset.description, useCase: preset.useCase, performance: preset.performance, cognitivePatterns: preset.cognitivePatterns, }, }; // Select appropriate template based on model type const templateMap = { transformer: 'transformer_nlp', cnn: 'cnn_vision', lstm: 'lstm_sequence', gru: 'gru_sequence', autoencoder: 'autoencoder_compress', vae: 'vae_generator', gnn: 'gnn_social', gat: 'graph_attention', resnet: 'resnet_classifier', attention: 'attention_mechanism', diffusion: 'diffusion_model', neural_ode: 'neural_ode', capsnet: 'capsule_network', snn: 'spiking_neural', ntm: 'neural_turing', memnn: 'memory_network', nca: 'neural_cellular', hypernet: 'hypernetwork', maml: 'meta_learning', nas: 'neural_architecture_search', moe: 'mixture_of_experts', nerf: 'neural_radiance_field', wavenet: 'wavenet_audio', pointnet: 'pointnet_3d', world_model: 'world_model', normalizing_flow: 'flow_based', ebm: 'energy_based', neural_process: 'neural_processes', set_transformer: 'set_transformer', }; const template = templateMap[preset.model] || 'preset_model'; return this.createAdvancedNeuralModel(agentId, template, config); } /** * Create a neural network from a recommended preset based on use case * @param {string} agentId - Agent identifier * @param {string} useCase - Use case description * @param {object} customConfig - Optional custom configuration overrides */ async createAgentForUseCase(agentId, useCase, customConfig = {}) { const recommendedPreset = getRecommendedPreset(useCase); if (!recommendedPreset) { // Try searching by use case const searchResults = searchPresetsByUseCase(useCase); if (searchResults.length === 0) { throw new Error(`No preset found for use case: ${useCase}`); } const bestMatch = searchResults[0]; console.log(`Found preset for "${useCase}": ${bestMatch.preset.name}`); return this.createAgentFromPreset( agentId, bestMatch.category, bestMatch.presetName, customConfig, ); } return this.createAgentFromPreset( agentId, recommendedPreset.category, recommendedPreset.presetName, customConfig, ); } /** * Get all available presets for a category * @param {string} category - Preset category */ getAvailablePresets(category = null) { if (category) { return getCategoryPresets(category); } return NEURAL_PRESETS; } /** * Search presets by use case or description * @param {string} searchTerm - Search term */ searchPresets(searchTerm) { return searchPresetsByUseCase(searchTerm); } /** * Get performance information for a preset * @param {string} category - Preset category * @param {string} presetName - Preset name */ getPresetPerformance(category, presetName) { const preset = getPreset(category, presetName); return preset.performance; } /** * List all available preset categories and their counts */ getPresetSummary() { const summary = {}; Object.entries(NEURAL_PRESETS).forEach(([category, presets]) => { summary[category] = { count: Object.keys(presets).length, presets: Object.keys(presets), }; }); return summary; } /** * Get detailed information about agent's preset (if created from preset) * @param {string} agentId - Agent identifier */ getAgentPresetInfo(agentId) { const network = this.neuralNetworks.get(agentId); if (!network || !network.config || !network.config.presetInfo) { return null; } return network.config.presetInfo; } /** * Update existing agent with preset configuration * @param {string} agentId - Agent identifier * @param {string} category - Preset category * @param {string} presetName - Preset name * @param {object} customConfig - Optional custom configuration overrides */ async updateAgentWithPreset(agentId, category, presetName, customConfig = {}) { const existingNetwork = this.neuralNetworks.get(agentId); if (existingNetwork) { // Save current state if needed console.log(`Updating agent ${agentId} with new preset: ${category}/${presetName}`); } // Preserve cognitive evolution history const cognitiveHistory = await this.cognitiveEvolution.preserveHistory(agentId); const metaLearningState = await this.metaLearning.preserveState(agentId); // Remove existing network this.neuralNetworks.delete(agentId); this.neuralModels.delete(agentId); // Create new network with preset and restored cognitive capabilities const newNetwork = await this.createAgentFromPreset(agentId, category, presetName, customConfig); // Restore cognitive evolution and meta-learning state await this.cognitiveEvolution.restoreHistory(agentId, cognitiveHistory); await this.metaLearning.restoreState(agentId, metaLearningState); return newNetwork; } /** * Batch create agents from presets * @param {Array} agentConfigs - Array of {agentId, category, presetName, customConfig} */ async batchCreateAgentsFromPresets(agentConfigs) { const results = []; const errors = []; for (const config of agentConfigs) { try { const agent = await this.createAgentFromPreset( config.agentId, config.category, config.presetName, config.customConfig || {}, ); results.push({ agentId: config.agentId, success: true, agent }); } catch (error) { errors.push({ agentId: config.agentId, error: error.message }); } } return { results, errors }; } // =============================== // ENHANCED NEURAL CAPABILITIES // =============================== /** * Enable knowledge sharing between agents * @param {Array} agentIds - List of agent IDs * @param {Object} session - Collaborative session object */ async enableKnowledgeSharing(agentIds, session) { const knowledgeGraph = session.knowledgeGraph; for (const agentId of agentIds) { const agent = this.neuralNetworks.get(agentId); if (!agent) { continue; } // Extract knowledge from agent const knowledge = await this.extractAgentKnowledge(agentId); knowledgeGraph.set(agentId, knowledge); // Store in shared knowledge base this.sharedKnowledge.set(agentId, knowledge); } // Create knowledge sharing matrix const sharingMatrix = await this.createKnowledgeSharingMatrix(agentIds); session.knowledgeSharingMatrix = sharingMatrix; console.log(`Knowledge sharing enabled for ${agentIds.length} agents`); } /** * Extract knowledge from a neural network agent * @param {string} agentId - Agent identifier */ async extractAgentKnowledge(agentId) { const network = this.neuralNetworks.get(agentId); if (!network) { return null; } const knowledge = { agentId, timestamp: Date.now(), modelType: network.modelType, weights: await this.extractImportantWeights(network), patterns: await this.cognitiveEvolution.extractPatterns(agentId), experiences: await this.metaLearning.extractExperiences(agentId), performance: network.getMetrics(), specializations: await this.identifySpecializations(agentId), }; return knowledge; } /** * Extract important weights from a neural network * @param {Object} network - Neural network instance */ async extractImportantWeights(network) { // Use magnitude-based importance scoring const weights = network.getWeights(); const importantWeights = {}; Object.entries(weights).forEach(([layer, weight]) => { if (weight && weight.length > 0) { // Calculate importance scores (magnitude-based) const importance = weight.map(w => Math.abs(w)); const threshold = this.calculateImportanceThreshold(importance); importantWeights[layer] = weight.filter((w, idx) => importance[idx] > threshold); } }); return importantWeights; } /** * Calculate importance threshold for weight selection * @param {Array} importance - Array of importance scores */ calculateImportanceThreshold(importance) { const sorted = importance.slice().sort((a, b) => b - a); // Take top 20% of weights const topPercentile = Math.floor(sorted.length * 0.2); return sorted[topPercentile] || 0; } /** * Identify agent specializations based on performance patterns * @param {string} agentId - Agent identifier */ async identifySpecializations(agentId) { const metrics = this.performanceMetrics.get(agentId); if (!metrics) { return []; } const specializations = []; // Analyze adaptation history for specialization patterns for (const adaptation of metrics.adaptationHistory) { if (adaptation.trainingResult && adaptation.trainingResult.accuracy > 0.8) { specializations.push({ domain: this.inferDomainFromTraining(adaptation), confidence: adaptation.trainingResult.accuracy, timestamp: adaptation.timestamp, }); } } return specializations; } /** * Infer domain from training patterns * @param {Object} adaptation - Adaptation record */ inferDomainFromTraining(adaptation) { // Simple heuristic - in practice, would use more sophisticated analysis const accuracy = adaptation.trainingResult.accuracy; const loss = adaptation.trainingResult.loss; if (accuracy > 0.9 && loss < 0.1) { return 'classification'; } if (accuracy > 0.85 && loss < 0.2) { return 'regression'; } if (loss < 0.3) { return 'generation'; } return 'general'; } /** * Create knowledge sharing matrix between agents * @param {Array} agentIds - List of agent IDs */ async createKnowledgeSharingMatrix(agentIds) { const matrix = {}; for (let i = 0; i < agentIds.length; i++) { const agentA = agentIds[i]; matrix[agentA] = {}; for (let j = 0; j < agentIds.length; j++) { const agentB = agentIds[j]; if (i === j) { matrix[agentA][agentB] = 1.0; // Self-similarity continue; } const similarity = await this.calculateAgentSimilarity(agentA, agentB); matrix[agentA][agentB] = similarity; } } return matrix; } /** * Calculate similarity between two agents * @param {string} agentA - First agent ID * @param {string} agentB - Second agent ID */ async calculateAgentSimilarity(agentA, agentB) { const knowledgeA = this.sharedKnowledge.get(agentA); const knowledgeB = this.sharedKnowledge.get(agentB); if (!knowledgeA || !knowledgeB) { return 0; } // Calculate multiple similarity metrics const structuralSimilarity = this.calculateStructuralSimilarity(knowledgeA, knowledgeB); const performanceSimilarity = this.calculatePerformanceSimilarity(knowledgeA, knowledgeB); const specializationSimilarity = this.calculateSpecializationSimilarity(knowledgeA, knowledgeB); // Weighted combination return (structuralSimilarity * 0.4 + performanceSimilarity * 0.3 + specializationSimilarity * 0.3); } /** * Calculate structural similarity between agents * @param {Object} knowledgeA - Knowledge from agent A * @param {Object} knowledgeB - Knowledge from agent B */ calculateStructuralSimilarity(knowledgeA, knowledgeB) { if (knowledgeA.modelType !== knowledgeB.modelType) { return 0.1; } // Compare weight patterns (simplified cosine similarity) const weightsA = Object.values(knowledgeA.weights).flat(); const weightsB = Object.values(knowledgeB.weights).flat(); if (weightsA.length === 0 || weightsB.length === 0) { return 0.5; } const minLength = Math.min(weightsA.length, weightsB.length); let dotProduct = 0; let normA = 0; let normB = 0; for (let i = 0; i < minLength; i++) { dotProduct += weightsA[i] * weightsB[i]; normA += weightsA[i] * weightsA[i]; normB += weightsB[i] * weightsB[i]; } const similarity = dotProduct / (Math.sqrt(normA) * Math.sqrt(normB)); return Math.max(0, Math.min(1, similarity)); } /** * Calculate performance similarity between agents * @param {Object} knowledgeA - Knowledge from agent A * @param {Object} knowledgeB - Knowledge from agent B */ calculatePerformanceSimilarity(knowledgeA, knowledgeB) { const perfA = knowledgeA.performance; const perfB = knowledgeB.performance; const accuracyDiff = Math.abs(perfA.accuracy - perfB.accuracy); const lossDiff = Math.abs(perfA.loss - perfB.loss); // Inverse relationship - smaller differences = higher similarity const accuracySimilarity = 1 - Math.min(1, accuracyDiff); const lossSimilarity = 1 - Math.min(1, lossDiff); return (accuracySimilarity + lossSimilarity) / 2; } /** * Calculate specialization similarity between agents * @param {Object} knowledgeA - Knowledge from agent A * @param {Object} knowledgeB - Knowledge from agent B */ calculateSpecializationSimilarity(knowledgeA, knowledgeB) { const specsA = new Set(knowledgeA.specializations.map(s => s.domain)); const specsB = new Set(knowledgeB.specializations.map(s => s.domain)); const intersection = new Set([...specsA].filter(x => specsB.has(x))); const union = new Set([...specsA, ...specsB]); return union.size > 0 ? intersection.size / union.size : 0; } /** * Start knowledge distillation learning * @param {Object} session - Collaborative session */ startKnowledgeDistillation(session) { const distillationFunction = async() => { if (!session.active) { return; } try { // Identify teacher and student agents const teachers = await this.identifyTeacherAgents(session.agentIds); const students = session.agentIds.filter(id => !teachers.includes(id)); // Perform knowledge distillation for (const teacher of teachers) { for (const student of students) { await this.performKnowledgeDistillation(teacher, student, session); } } console.log(`Knowledge distillation completed for session ${session.id}`); } catch (error) { console.error('Knowledge distillation failed:', error); } // Schedule next distillation setTimeout(distillationFunction, session.syncInterval); }; // Start distillation process setTimeout(distillationFunction, 1000); } /** * Identify teacher agents based on performance * @param {Array} agentIds - List of agent IDs */ async identifyTeacherAgents(agentIds) { const agentPerformances = []; for (const agentId of agentIds) { const network = this.neuralNetworks.get(agentId); if (network) { const metrics = network.getMetrics(); agentPerformances.push({ agentId, performance: metrics.accuracy || 0, }); } } // Sort by performance and take top 30% agentPerformances.sort((a, b) => b.performance - a.performance); const numTeachers = Math.max(1, Math.floor(agentPerformances.length * 0.3)); return agentPerformances.slice(0, numTeachers).map(ap => ap.agentId); } /** * Perform knowledge distillation between teacher and student * @param {string} teacherAgentId - Teacher agent ID * @param {string} studentAgentId - Student agent ID * @param {Object} session - Collaborative session */ async performKnowledgeDistillation(teacherAgentId, studentAgentId, session) { const teacher = this.neuralNetworks.get(teacherAgentId); const student = this.neuralNetworks.get(studentAgentId); if (!teacher || !student) { return; } try { // Extract soft targets from teacher const teacherKnowledge = this.sharedKnowledge.get(teacherAgentId); if (!teacherKnowledge) { return; } // Create distillation loss function const distillationTemperature = 3.0; const alpha = 0.7; // Weight for distillation loss vs hard target loss // Apply knowledge distillation (simplified) const distillationResult = await this.applyKnowledgeDistillation( student, teacherKnowledge, { temperature: distillationTemperature, alpha }, ); // Update collaboration matrix const teacherIdx = session.agentIds.indexOf(teacherAgentId); const studentIdx = session.agentIds.indexOf(studentAgentId); if (teacherIdx >= 0 && studentIdx >= 0) { session.coordinationMatrix[studentIdx][teacherIdx] += distillationResult.improvement; } } catch (error) { console.error(`Knowledge distillation failed between ${teacherAgentId} and ${studentAgentId}:`, error); } } /** * Apply knowledge distillation to student network * @param {Object} student - Student network * @param {Object} teacherKnowledge - Teacher's knowledge * @param {Object} options - Distillation options */ async applyKnowledgeDistillation(student, teacherKnowledge, options) { const { temperature, alpha } = options; // Simulate knowledge transfer (in practice, would involve actual training) const beforeMetrics = student.getMetrics(); // Apply teacher's patterns to student (simplified) const patterns = teacherKnowledge.patterns; if (patterns && patterns.length > 0) { await this.cognitiveEvolution.transferPatterns(student.agentId, patterns); } const afterMetrics = student.getMetrics(); const improvement = Math.max(0, afterMetrics.accuracy - beforeMetrics.accuracy); return { improvement, beforeMetrics, afterMetrics }; } /** * Start neural coordination protocol * @param {Object} session - Collaborative session */ startNeuralCoordination(session) { const coordinationFunction = async() => { if (!session.active) { return; } try { // Update coordination matrix await this.updateCoordinationMatrix(session); // Perform neural coordination await this.coordinationProtocol.coordinate(session); // Apply coordination results await this.applyCoordinationResults(session); console.log(`Neural coordination completed for session ${session.id}`); } catch (error) { console.error('Neural coordination failed:', error); } // Schedule next coordination setTimeout(coordinationFunction, session.syncInterval); }; // Start coordination process setTimeout(coordinationFunction, 1000); } /** * Update coordination matrix based on agent interactions * @param {Object} session - Collaborative session */ async updateCoordinationMatrix(session) { for (let i = 0; i < session.agentIds.length; i++) { for (let j = 0; j < session.agentIds.length; j++) { if (i === j) { continue; } const agentA = session.agentIds[i]; const agentB = session.agentIds[j]; // Calculate interaction strength const interactionStrength = await this.calculateInteractionStrength(agentA, agentB); session.coordinationMatrix[i][j] = interactionStrength; } } } /** * Calculate interaction strength between two agents * @param {string} agentA - First agent ID * @param {string} agentB - Second agent ID */ async calculateInteractionStrength(agentA, agentB) { const interactions = this.agentInteractions.get(`${agentA}-${agentB}`) || []; if (interactions.length === 0) { return 0.1; } // Minimal baseline interaction // Calculate recency-weighted interaction strength const now = Date.now(); let totalStrength = 0; let totalWeight = 0; for (const interaction of interactions) { const age = now - interaction.timestamp; const weight = Math.exp(-age / (24 * 60 * 60 * 1000)); // Exponential decay over 24 hours totalStrength += interaction.strength * weight; totalWeight += weight; } return totalWeight > 0 ? totalStrength / totalWeight : 0.1; } /** * Apply coordination results to agents * @param {Object} session - Collaborative session */ async applyCoordinationResults(session) { const coordinationResults = await this.coordinationProtocol.getResults(session.id); if (!coordinationResults) { return; } for (const [agentId, coordination] of coordinationResults.entries()) { const agent = this.neuralNetworks.get(agentId); if (!agent) { continue; } // Apply coordination adjustments if (coordination.weightAdjustments) { await this.applyWeightAdjustments(agent, coordination.weightAdjustments); } // Apply cognitive pattern updates if (coordination.patternUpdates) { await this.cognitiveEvolution.applyPatternUpdates(agentId, coordination.patternUpdates); } // Update performance metrics const metrics = this.performanceMetrics.get(agentId); if (metrics) { metrics.collaborationScore = coordination.collaborationScore || 0; metrics.cognitivePatterns.push(...(coordination.newPatterns || [])); } } } /** * Apply weight adjustments to a neural network * @param {Object} agent - Neural network agent * @param {Object} adjustments - Weight adjustments */ async applyWeightAdjustments(agent, adjustments) { try { const currentWeights = agent.getWeights(); const adjustedWeights = {}; Object.entries(currentWeights).forEach(([layer, weights]) => { if (adjustments[layer]) { adjustedWeights[layer] = weights.map((w, idx) => { const adjustment = adjustments[layer][idx] || 0; return w + adjustment * 0.1; // Scale adjustment factor }); } else { adjustedWeights[layer] = weights; } }); agent.setWeights(adjustedWeights); } catch (error) { console.error('Failed to apply weight adjustments:', error); } } /** * Record agent interaction for coordination tracking * @param {string} agentA - First agent ID * @param {string} agentB - Second agent ID * @param {number} strength - Interaction strength (0-1) * @param {string} type - Interaction type */ recordAgentInteraction(agentA, agentB, strength, type = 'general') { const interactionKey = `${agentA}-${agentB}`; if (!this.agentInteractions.has(interactionKey)) { this.agentInteractions.set(interactionKey, []); } this.agentInteractions.get(interactionKey).push({ timestamp: Date.now(), strength, type, agentA, agentB, }); // Keep only recent interactions (last 100) const interactions = this.agentInteractions.get(interactionKey); if (interactions.length > 100) { interactions.splice(0, interactions.length - 100); } } /** * Get all complete neural presets (27+ models) */ getCompleteNeuralPresets() { return COMPLETE_NEURAL_PRESETS; } /** * Get preset recommendations based on requirements * @param {string} useCase - Use case description * @param {Object} requirements - Performance and other requirements */ getPresetRecommendations(useCase, requirements = {}) { return this.cognitivePatternSelector.getPresetRecommendations(useCase, requirements); } /** * Get adaptation recommendations for an agent * @param {string} agentId - Agent identifier */ async getAdaptationRecommendations(agentId) { return this.neuralAdaptationEngine.getAdaptationRecommendations(agentId); } /** * Export adaptation insights across all agents */ getAdaptationInsights() { return this.neuralAdaptationEngine.exportAdaptationInsights(); } /** * List all available neural model types with counts */ getAllNeuralModelTypes() { const modelTypes = {}; // Count presets from complete neural presets Object.entries(COMPLETE_NEURAL_PRESETS).forEach(([modelType, presets]) => { modelTypes[modelType] = { count: Object.keys(presets).length, presets: Object.keys(presets), description: Object.values(presets)[0]?.description || 'Neural model type', }; }); return modelTypes; } /** * Get comprehensive neural network statistics */ getEnhancedStatistics() { const stats = { totalAgents: this.neuralNetworks.size, modelTypes: {}, cognitiveEvolution: this.cognitiveEvolution.getStatistics(), metaLearning: this.metaLearning.getStatistics(), coordination: this.coordinationProtocol.getStatistics(), performance: {}, collaborations: 0, }; // Count model types for (const [agentId, network] of this.neuralNetworks.entries()) { const modelType = network.modelType || 'unknown'; stats.modelTypes[modelType] = (stats.modelTypes[modelType] || 0) + 1; // Performance statistics const metrics = this.performanceMetrics.get(agentId); if (metrics) { if (!stats.performance[modelType]) { stats.performance[modelType] = { count: 0, avgAccuracy: 0, avgCollaborationScore: 0, totalAdaptations: 0, }; } const perf = stats.performance[modelType]; perf.count++; perf.avgAccuracy += (network.getMetrics().accuracy || 0); perf.avgCollaborationScore += metrics.collaborationScore; perf.totalAdaptations += metrics.adaptationHistory.length; } } // Calculate averages Object.values(stats.performance).forEach(perf => { if (perf.count > 0) { perf.avgAccuracy /= perf.count; perf.avgCollaborationScore /= perf.count; } }); // Count active collaborations stats.collaborations = this.sharedKnowledge.size; return stats; } } // Neural Network wrapper class class NeuralNetwork { constructor(networkId, agentId, config, wasmModule) { this.networkId = networkId; this.agentId = agentId; this.config = config; this.wasmModule = wasmModule; this.trainingHistory = []; this.metrics = { accuracy: 0, loss: 1.0, epochs_trained: 0, total_samples: 0, }; } async forward(input) { try { const result = this.wasmModule.exports.forward_pass(this.networkId, input); return result; } catch (error) { console.error('Forward pass failed:', error); return new Float32Array(this.config.layers[this.config.layers.length - 1]).fill(0.5); } } async train(trainingData, options) { const { epochs, batchSize, learningRate, freezeLayers } = options; for (let epoch = 0; epoch < epochs; epoch++) { let epochLoss = 0; let batchCount = 0; // Process in batches for (let