rrweb
Version:
record and replay the web
714 lines (693 loc) • 32.9 kB
JavaScript
'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
var NodeType;
(function (NodeType) {
NodeType[NodeType["Document"] = 0] = "Document";
NodeType[NodeType["DocumentType"] = 1] = "DocumentType";
NodeType[NodeType["Element"] = 2] = "Element";
NodeType[NodeType["Text"] = 3] = "Text";
NodeType[NodeType["CDATA"] = 4] = "CDATA";
NodeType[NodeType["Comment"] = 5] = "Comment";
})(NodeType || (NodeType = {}));
const DEPARTED_MIRROR_ACCESS_WARNING = 'Please stop import mirror directly. Instead of that,' +
'\r\n' +
'now you can use replayer.getMirror() to access the mirror instance of a replayer,' +
'\r\n' +
'or you can use record.mirror to access the mirror instance during recording.';
let _mirror = {
map: {},
getId() {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
return -1;
},
getNode() {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
return null;
},
removeNodeFromMap() {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
},
has() {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
return false;
},
reset() {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
},
};
if (typeof window !== 'undefined' && window.Proxy && window.Reflect) {
_mirror = new Proxy(_mirror, {
get(target, prop, receiver) {
if (prop === 'map') {
console.error(DEPARTED_MIRROR_ACCESS_WARNING);
}
return Reflect.get(target, prop, receiver);
},
});
}
/*
* base64-arraybuffer 1.0.1 <https://github.com/niklasvh/base64-arraybuffer>
* Copyright (c) 2021 Niklas von Hertzen <https://hertzen.com>
* Released under MIT License
*/
var chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
// Use a lookup table to find the index.
var lookup = typeof Uint8Array === 'undefined' ? [] : new Uint8Array(256);
for (var i$1 = 0; i$1 < chars.length; i$1++) {
lookup[chars.charCodeAt(i$1)] = i$1;
}
var WorkerClass = null;
try {
var WorkerThreads =
typeof module !== 'undefined' && typeof module.require === 'function' && module.require('worker_threads') ||
typeof __non_webpack_require__ === 'function' && __non_webpack_require__('worker_threads') ||
typeof require === 'function' && require('worker_threads');
WorkerClass = WorkerThreads.Worker;
} catch(e) {} // eslint-disable-line
function decodeBase64$1(base64, enableUnicode) {
return Buffer.from(base64, 'base64').toString(enableUnicode ? 'utf16' : 'utf8');
}
function createBase64WorkerFactory$2(base64, sourcemapArg, enableUnicodeArg) {
var sourcemap = sourcemapArg === undefined ? null : sourcemapArg;
var enableUnicode = enableUnicodeArg === undefined ? false : enableUnicodeArg;
var source = decodeBase64$1(base64, enableUnicode);
var start = source.indexOf('\n', 10) + 1;
var body = source.substring(start) + (sourcemap ? '\/\/# sourceMappingURL=' + sourcemap : '');
return function WorkerFactory(options) {
return new WorkerClass(body, Object.assign({}, options, { eval: true }));
};
}
function decodeBase64(base64, enableUnicode) {
var binaryString = atob(base64);
if (enableUnicode) {
var binaryView = new Uint8Array(binaryString.length);
for (var i = 0, n = binaryString.length; i < n; ++i) {
binaryView[i] = binaryString.charCodeAt(i);
}
return String.fromCharCode.apply(null, new Uint16Array(binaryView.buffer));
}
return binaryString;
}
function createURL(base64, sourcemapArg, enableUnicodeArg) {
var sourcemap = sourcemapArg === undefined ? null : sourcemapArg;
var enableUnicode = enableUnicodeArg === undefined ? false : enableUnicodeArg;
var source = decodeBase64(base64, enableUnicode);
var start = source.indexOf('\n', 10) + 1;
var body = source.substring(start) + (sourcemap ? '\/\/# sourceMappingURL=' + sourcemap : '');
var blob = new Blob([body], { type: 'application/javascript' });
return URL.createObjectURL(blob);
}
function createBase64WorkerFactory$1(base64, sourcemapArg, enableUnicodeArg) {
var url;
return function WorkerFactory(options) {
url = url || createURL(base64, sourcemapArg, enableUnicodeArg);
return new Worker(url, options);
};
}
var kIsNodeJS = Object.prototype.toString.call(typeof process !== 'undefined' ? process : 0) === '[object process]';
function isNodeJS() {
return kIsNodeJS;
}
function createBase64WorkerFactory(base64, sourcemapArg, enableUnicodeArg) {
if (isNodeJS()) {
return createBase64WorkerFactory$2(base64, sourcemapArg, enableUnicodeArg);
}
return createBase64WorkerFactory$1(base64, sourcemapArg, enableUnicodeArg);
}
createBase64WorkerFactory('Lyogcm9sbHVwLXBsdWdpbi13ZWItd29ya2VyLWxvYWRlciAqLwooZnVuY3Rpb24gKCkgewogICAgJ3VzZSBzdHJpY3QnOwoKICAgIC8qISAqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKg0KICAgIENvcHlyaWdodCAoYykgTWljcm9zb2Z0IENvcnBvcmF0aW9uLg0KDQogICAgUGVybWlzc2lvbiB0byB1c2UsIGNvcHksIG1vZGlmeSwgYW5kL29yIGRpc3RyaWJ1dGUgdGhpcyBzb2Z0d2FyZSBmb3IgYW55DQogICAgcHVycG9zZSB3aXRoIG9yIHdpdGhvdXQgZmVlIGlzIGhlcmVieSBncmFudGVkLg0KDQogICAgVEhFIFNPRlRXQVJFIElTIFBST1ZJREVEICJBUyBJUyIgQU5EIFRIRSBBVVRIT1IgRElTQ0xBSU1TIEFMTCBXQVJSQU5USUVTIFdJVEgNCiAgICBSRUdBUkQgVE8gVEhJUyBTT0ZUV0FSRSBJTkNMVURJTkcgQUxMIElNUExJRUQgV0FSUkFOVElFUyBPRiBNRVJDSEFOVEFCSUxJVFkNCiAgICBBTkQgRklUTkVTUy4gSU4gTk8gRVZFTlQgU0hBTEwgVEhFIEFVVEhPUiBCRSBMSUFCTEUgRk9SIEFOWSBTUEVDSUFMLCBESVJFQ1QsDQogICAgSU5ESVJFQ1QsIE9SIENPTlNFUVVFTlRJQUwgREFNQUdFUyBPUiBBTlkgREFNQUdFUyBXSEFUU09FVkVSIFJFU1VMVElORyBGUk9NDQogICAgTE9TUyBPRiBVU0UsIERBVEEgT1IgUFJPRklUUywgV0hFVEhFUiBJTiBBTiBBQ1RJT04gT0YgQ09OVFJBQ1QsIE5FR0xJR0VOQ0UgT1INCiAgICBPVEhFUiBUT1JUSU9VUyBBQ1RJT04sIEFSSVNJTkcgT1VUIE9GIE9SIElOIENPTk5FQ1RJT04gV0lUSCBUSEUgVVNFIE9SDQogICAgUEVSRk9STUFOQ0UgT0YgVEhJUyBTT0ZUV0FSRS4NCiAgICAqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKiAqLw0KDQogICAgZnVuY3Rpb24gX19hd2FpdGVyKHRoaXNBcmcsIF9hcmd1bWVudHMsIFAsIGdlbmVyYXRvcikgew0KICAgICAgICBmdW5jdGlvbiBhZG9wdCh2YWx1ZSkgeyByZXR1cm4gdmFsdWUgaW5zdGFuY2VvZiBQID8gdmFsdWUgOiBuZXcgUChmdW5jdGlvbiAocmVzb2x2ZSkgeyByZXNvbHZlKHZhbHVlKTsgfSk7IH0NCiAgICAgICAgcmV0dXJuIG5ldyAoUCB8fCAoUCA9IFByb21pc2UpKShmdW5jdGlvbiAocmVzb2x2ZSwgcmVqZWN0KSB7DQogICAgICAgICAgICBmdW5jdGlvbiBmdWxmaWxsZWQodmFsdWUpIHsgdHJ5IHsgc3RlcChnZW5lcmF0b3IubmV4dCh2YWx1ZSkpOyB9IGNhdGNoIChlKSB7IHJlamVjdChlKTsgfSB9DQogICAgICAgICAgICBmdW5jdGlvbiByZWplY3RlZCh2YWx1ZSkgeyB0cnkgeyBzdGVwKGdlbmVyYXRvclsidGhyb3ciXSh2YWx1ZSkpOyB9IGNhdGNoIChlKSB7IHJlamVjdChlKTsgfSB9DQogICAgICAgICAgICBmdW5jdGlvbiBzdGVwKHJlc3VsdCkgeyByZXN1bHQuZG9uZSA/IHJlc29sdmUocmVzdWx0LnZhbHVlKSA6IGFkb3B0KHJlc3VsdC52YWx1ZSkudGhlbihmdWxmaWxsZWQsIHJlamVjdGVkKTsgfQ0KICAgICAgICAgICAgc3RlcCgoZ2VuZXJhdG9yID0gZ2VuZXJhdG9yLmFwcGx5KHRoaXNBcmcsIF9hcmd1bWVudHMgfHwgW10pKS5uZXh0KCkpOw0KICAgICAgICB9KTsNCiAgICB9CgogICAgLyoKICAgICAqIGJhc2U2NC1hcnJheWJ1ZmZlciAxLjAuMSA8aHR0cHM6Ly9naXRodWIuY29tL25pa2xhc3ZoL2Jhc2U2NC1hcnJheWJ1ZmZlcj4KICAgICAqIENvcHlyaWdodCAoYykgMjAyMSBOaWtsYXMgdm9uIEhlcnR6ZW4gPGh0dHBzOi8vaGVydHplbi5jb20+CiAgICAgKiBSZWxlYXNlZCB1bmRlciBNSVQgTGljZW5zZQogICAgICovCiAgICB2YXIgY2hhcnMgPSAnQUJDREVGR0hJSktMTU5PUFFSU1RVVldYWVphYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3h5ejAxMjM0NTY3ODkrLyc7CiAgICAvLyBVc2UgYSBsb29rdXAgdGFibGUgdG8gZmluZCB0aGUgaW5kZXguCiAgICB2YXIgbG9va3VwID0gdHlwZW9mIFVpbnQ4QXJyYXkgPT09ICd1bmRlZmluZWQnID8gW10gOiBuZXcgVWludDhBcnJheSgyNTYpOwogICAgZm9yICh2YXIgaSA9IDA7IGkgPCBjaGFycy5sZW5ndGg7IGkrKykgewogICAgICAgIGxvb2t1cFtjaGFycy5jaGFyQ29kZUF0KGkpXSA9IGk7CiAgICB9CiAgICB2YXIgZW5jb2RlID0gZnVuY3Rpb24gKGFycmF5YnVmZmVyKSB7CiAgICAgICAgdmFyIGJ5dGVzID0gbmV3IFVpbnQ4QXJyYXkoYXJyYXlidWZmZXIpLCBpLCBsZW4gPSBieXRlcy5sZW5ndGgsIGJhc2U2NCA9ICcnOwogICAgICAgIGZvciAoaSA9IDA7IGkgPCBsZW47IGkgKz0gMykgewogICAgICAgICAgICBiYXNlNjQgKz0gY2hhcnNbYnl0ZXNbaV0gPj4gMl07CiAgICAgICAgICAgIGJhc2U2NCArPSBjaGFyc1soKGJ5dGVzW2ldICYgMykgPDwgNCkgfCAoYnl0ZXNbaSArIDFdID4+IDQpXTsKICAgICAgICAgICAgYmFzZTY0ICs9IGNoYXJzWygoYnl0ZXNbaSArIDFdICYgMTUpIDw8IDIpIHwgKGJ5dGVzW2kgKyAyXSA+PiA2KV07CiAgICAgICAgICAgIGJhc2U2NCArPSBjaGFyc1tieXRlc1tpICsgMl0gJiA2M107CiAgICAgICAgfQogICAgICAgIGlmIChsZW4gJSAzID09PSAyKSB7CiAgICAgICAgICAgIGJhc2U2NCA9IGJhc2U2NC5zdWJzdHJpbmcoMCwgYmFzZTY0Lmxlbmd0aCAtIDEpICsgJz0nOwogICAgICAgIH0KICAgICAgICBlbHNlIGlmIChsZW4gJSAzID09PSAxKSB7CiAgICAgICAgICAgIGJhc2U2NCA9IGJhc2U2NC5zdWJzdHJpbmcoMCwgYmFzZTY0Lmxlbmd0aCAtIDIpICsgJz09JzsKICAgICAgICB9CiAgICAgICAgcmV0dXJuIGJhc2U2NDsKICAgIH07CgogICAgY29uc3QgbGFzdEJsb2JNYXAgPSBuZXcgTWFwKCk7DQogICAgY29uc3QgdHJhbnNwYXJlbnRCbG9iTWFwID0gbmV3IE1hcCgpOw0KICAgIGZ1bmN0aW9uIGdldFRyYW5zcGFyZW50QmxvYkZvcih3aWR0aCwgaGVpZ2h0LCBkYXRhVVJMT3B0aW9ucykgew0KICAgICAgICByZXR1cm4gX19hd2FpdGVyKHRoaXMsIHZvaWQgMCwgdm9pZCAwLCBmdW5jdGlvbiogKCkgew0KICAgICAgICAgICAgY29uc3QgaWQgPSBgJHt3aWR0aH0tJHtoZWlnaHR9YDsNCiAgICAgICAgICAgIGlmICgnT2Zmc2NyZWVuQ2FudmFzJyBpbiBnbG9iYWxUaGlzKSB7DQogICAgICAgICAgICAgICAgaWYgKHRyYW5zcGFyZW50QmxvYk1hcC5oYXMoaWQpKQ0KICAgICAgICAgICAgICAgICAgICByZXR1cm4gdHJhbnNwYXJlbnRCbG9iTWFwLmdldChpZCk7DQogICAgICAgICAgICAgICAgY29uc3Qgb2Zmc2NyZWVuID0gbmV3IE9mZnNjcmVlbkNhbnZhcyh3aWR0aCwgaGVpZ2h0KTsNCiAgICAgICAgICAgICAgICBvZmZzY3JlZW4uZ2V0Q29udGV4dCgnMmQnKTsNCiAgICAgICAgICAgICAgICBjb25zdCBibG9iID0geWllbGQgb2Zmc2NyZWVuLmNvbnZlcnRUb0Jsb2IoZGF0YVVSTE9wdGlvbnMpOw0KICAgICAgICAgICAgICAgIGNvbnN0IGFycmF5QnVmZmVyID0geWllbGQgYmxvYi5hcnJheUJ1ZmZlcigpOw0KICAgICAgICAgICAgICAgIGNvbnN0IGJhc2U2NCA9IGVuY29kZShhcnJheUJ1ZmZlcik7DQogICAgICAgICAgICAgICAgdHJhbnNwYXJlbnRCbG9iTWFwLnNldChpZCwgYmFzZTY0KTsNCiAgICAgICAgICAgICAgICByZXR1cm4gYmFzZTY0Ow0KICAgICAgICAgICAgfQ0KICAgICAgICAgICAgZWxzZSB7DQogICAgICAgICAgICAgICAgcmV0dXJuICcnOw0KICAgICAgICAgICAgfQ0KICAgICAgICB9KTsNCiAgICB9DQogICAgY29uc3Qgd29ya2VyID0gc2VsZjsNCiAgICB3b3JrZXIub25tZXNzYWdlID0gZnVuY3Rpb24gKGUpIHsNCiAgICAgICAgcmV0dXJuIF9fYXdhaXRlcih0aGlzLCB2b2lkIDAsIHZvaWQgMCwgZnVuY3Rpb24qICgpIHsNCiAgICAgICAgICAgIGlmICgnT2Zmc2NyZWVuQ2FudmFzJyBpbiBnbG9iYWxUaGlzKSB7DQogICAgICAgICAgICAgICAgY29uc3QgeyBpZCwgYml0bWFwLCB3aWR0aCwgaGVpZ2h0LCBkYXRhVVJMT3B0aW9ucyB9ID0gZS5kYXRhOw0KICAgICAgICAgICAgICAgIGNvbnN0IHRyYW5zcGFyZW50QmFzZTY0ID0gZ2V0VHJhbnNwYXJlbnRCbG9iRm9yKHdpZHRoLCBoZWlnaHQsIGRhdGFVUkxPcHRpb25zKTsNCiAgICAgICAgICAgICAgICBjb25zdCBvZmZzY3JlZW4gPSBuZXcgT2Zmc2NyZWVuQ2FudmFzKHdpZHRoLCBoZWlnaHQpOw0KICAgICAgICAgICAgICAgIGNvbnN0IGN0eCA9IG9mZnNjcmVlbi5nZXRDb250ZXh0KCcyZCcpOw0KICAgICAgICAgICAgICAgIGN0eC5kcmF3SW1hZ2UoYml0bWFwLCAwLCAwKTsNCiAgICAgICAgICAgICAgICBiaXRtYXAuY2xvc2UoKTsNCiAgICAgICAgICAgICAgICBjb25zdCBibG9iID0geWllbGQgb2Zmc2NyZWVuLmNvbnZlcnRUb0Jsb2IoZGF0YVVSTE9wdGlvbnMpOw0KICAgICAgICAgICAgICAgIGNvbnN0IHR5cGUgPSBibG9iLnR5cGU7DQogICAgICAgICAgICAgICAgY29uc3QgYXJyYXlCdWZmZXIgPSB5aWVsZCBibG9iLmFycmF5QnVmZmVyKCk7DQogICAgICAgICAgICAgICAgY29uc3QgYmFzZTY0ID0gZW5jb2RlKGFycmF5QnVmZmVyKTsNCiAgICAgICAgICAgICAgICBpZiAoIWxhc3RCbG9iTWFwLmhhcyhpZCkgJiYgKHlpZWxkIHRyYW5zcGFyZW50QmFzZTY0KSA9PT0gYmFzZTY0KSB7DQogICAgICAgICAgICAgICAgICAgIGxhc3RCbG9iTWFwLnNldChpZCwgYmFzZTY0KTsNCiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIHdvcmtlci5wb3N0TWVzc2FnZSh7IGlkIH0pOw0KICAgICAgICAgICAgICAgIH0NCiAgICAgICAgICAgICAgICBpZiAobGFzdEJsb2JNYXAuZ2V0KGlkKSA9PT0gYmFzZTY0KQ0KICAgICAgICAgICAgICAgICAgICByZXR1cm4gd29ya2VyLnBvc3RNZXNzYWdlKHsgaWQgfSk7DQogICAgICAgICAgICAgICAgd29ya2VyLnBvc3RNZXNzYWdlKHsNCiAgICAgICAgICAgICAgICAgICAgaWQsDQogICAgICAgICAgICAgICAgICAgIHR5cGUsDQogICAgICAgICAgICAgICAgICAgIGJhc2U2NCwNCiAgICAgICAgICAgICAgICAgICAgd2lkdGgsDQogICAgICAgICAgICAgICAgICAgIGhlaWdodCwNCiAgICAgICAgICAgICAgICB9KTsNCiAgICAgICAgICAgICAgICBsYXN0QmxvYk1hcC5zZXQoaWQsIGJhc2U2NCk7DQogICAgICAgICAgICB9DQogICAgICAgICAgICBlbHNlIHsNCiAgICAgICAgICAgICAgICByZXR1cm4gd29ya2VyLnBvc3RNZXNzYWdlKHsgaWQ6IGUuZGF0YS5pZCB9KTsNCiAgICAgICAgICAgIH0NCiAgICAgICAgfSk7DQogICAgfTsKCn0pKCk7Cgo=', null, false);
/* eslint-enable */
// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
// aliases for shorter compressed code (most minifers don't do this)
var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
// fixed length extra bits
var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
// fixed distance extra bits
// see fleb note
var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
// code length index map
var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
// get base, reverse index map from extra bits
var freb = function (eb, start) {
var b = new u16(31);
for (var i = 0; i < 31; ++i) {
b[i] = start += 1 << eb[i - 1];
}
// numbers here are at max 18 bits
var r = new u32(b[30]);
for (var i = 1; i < 30; ++i) {
for (var j = b[i]; j < b[i + 1]; ++j) {
r[j] = ((j - b[i]) << 5) | i;
}
}
return [b, r];
};
var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1];
// we can ignore the fact that the other numbers are wrong; they never happen anyway
fl[28] = 258, revfl[258] = 28;
var _b = freb(fdeb, 0), revfd = _b[1];
// map of value to reverse (assuming 16 bits)
var rev = new u16(32768);
for (var i = 0; i < 32768; ++i) {
// reverse table algorithm from SO
var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1);
x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2);
x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4);
rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1;
}
// create huffman tree from u8 "map": index -> code length for code index
// mb (max bits) must be at most 15
// TODO: optimize/split up?
var hMap = (function (cd, mb, r) {
var s = cd.length;
// index
var i = 0;
// u16 "map": index -> # of codes with bit length = index
var l = new u16(mb);
// length of cd must be 288 (total # of codes)
for (; i < s; ++i)
++l[cd[i] - 1];
// u16 "map": index -> minimum code for bit length = index
var le = new u16(mb);
for (i = 0; i < mb; ++i) {
le[i] = (le[i - 1] + l[i - 1]) << 1;
}
var co;
if (r) {
// u16 "map": index -> number of actual bits, symbol for code
co = new u16(1 << mb);
// bits to remove for reverser
var rvb = 15 - mb;
for (i = 0; i < s; ++i) {
// ignore 0 lengths
if (cd[i]) {
// num encoding both symbol and bits read
var sv = (i << 4) | cd[i];
// free bits
var r_1 = mb - cd[i];
// start value
var v = le[cd[i] - 1]++ << r_1;
// m is end value
for (var m = v | ((1 << r_1) - 1); v <= m; ++v) {
// every 16 bit value starting with the code yields the same result
co[rev[v] >>> rvb] = sv;
}
}
}
}
else {
co = new u16(s);
for (i = 0; i < s; ++i)
co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
}
return co;
});
// fixed length tree
var flt = new u8(288);
for (var i = 0; i < 144; ++i)
flt[i] = 8;
for (var i = 144; i < 256; ++i)
flt[i] = 9;
for (var i = 256; i < 280; ++i)
flt[i] = 7;
for (var i = 280; i < 288; ++i)
flt[i] = 8;
// fixed distance tree
var fdt = new u8(32);
for (var i = 0; i < 32; ++i)
fdt[i] = 5;
// fixed length map
var flm = /*#__PURE__*/ hMap(flt, 9, 0);
// fixed distance map
var fdm = /*#__PURE__*/ hMap(fdt, 5, 0);
// get end of byte
var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); };
// typed array slice - allows garbage collector to free original reference,
// while being more compatible than .slice
var slc = function (v, s, e) {
if (s == null || s < 0)
s = 0;
if (e == null || e > v.length)
e = v.length;
// can't use .constructor in case user-supplied
var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s);
n.set(v.subarray(s, e));
return n;
};
// starting at p, write the minimum number of bits that can hold v to d
var wbits = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) >> 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
};
// starting at p, write the minimum number of bits (>8) that can hold v to d
var wbits16 = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) >> 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
d[o + 2] |= v >>> 16;
};
// creates code lengths from a frequency table
var hTree = function (d, mb) {
// Need extra info to make a tree
var t = [];
for (var i = 0; i < d.length; ++i) {
if (d[i])
t.push({ s: i, f: d[i] });
}
var s = t.length;
var t2 = t.slice();
if (!s)
return [new u8(0), 0];
if (s == 1) {
var v = new u8(t[0].s + 1);
v[t[0].s] = 1;
return [v, 1];
}
t.sort(function (a, b) { return a.f - b.f; });
// after i2 reaches last ind, will be stopped
// freq must be greater than largest possible number of symbols
t.push({ s: -1, f: 25001 });
var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
t[0] = { s: -1, f: l.f + r.f, l: l, r: r };
// efficient algorithm from UZIP.js
// i0 is lookbehind, i2 is lookahead - after processing two low-freq
// symbols that combined have high freq, will start processing i2 (high-freq,
// non-composite) symbols instead
// see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
while (i1 != s - 1) {
l = t[t[i0].f < t[i2].f ? i0++ : i2++];
r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r };
}
var maxSym = t2[0].s;
for (var i = 1; i < s; ++i) {
if (t2[i].s > maxSym)
maxSym = t2[i].s;
}
// code lengths
var tr = new u16(maxSym + 1);
// max bits in tree
var mbt = ln(t[i1 - 1], tr, 0);
if (mbt > mb) {
// more algorithms from UZIP.js
// TODO: find out how this code works (debt)
// ind debt
var i = 0, dt = 0;
// left cost
var lft = mbt - mb, cst = 1 << lft;
t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; });
for (; i < s; ++i) {
var i2_1 = t2[i].s;
if (tr[i2_1] > mb) {
dt += cst - (1 << (mbt - tr[i2_1]));
tr[i2_1] = mb;
}
else
break;
}
dt >>>= lft;
while (dt > 0) {
var i2_2 = t2[i].s;
if (tr[i2_2] < mb)
dt -= 1 << (mb - tr[i2_2]++ - 1);
else
++i;
}
for (; i >= 0 && dt; --i) {
var i2_3 = t2[i].s;
if (tr[i2_3] == mb) {
--tr[i2_3];
++dt;
}
}
mbt = mb;
}
return [new u8(tr), mbt];
};
// get the max length and assign length codes
var ln = function (n, l, d) {
return n.s == -1
? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
: (l[n.s] = d);
};
// length codes generation
var lc = function (c) {
var s = c.length;
// Note that the semicolon was intentional
while (s && !c[--s])
;
var cl = new u16(++s);
// ind num streak
var cli = 0, cln = c[0], cls = 1;
var w = function (v) { cl[cli++] = v; };
for (var i = 1; i <= s; ++i) {
if (c[i] == cln && i != s)
++cls;
else {
if (!cln && cls > 2) {
for (; cls > 138; cls -= 138)
w(32754);
if (cls > 2) {
w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305);
cls = 0;
}
}
else if (cls > 3) {
w(cln), --cls;
for (; cls > 6; cls -= 6)
w(8304);
if (cls > 2)
w(((cls - 3) << 5) | 8208), cls = 0;
}
while (cls--)
w(cln);
cls = 1;
cln = c[i];
}
}
return [cl.subarray(0, cli), s];
};
// calculate the length of output from tree, code lengths
var clen = function (cf, cl) {
var l = 0;
for (var i = 0; i < cl.length; ++i)
l += cf[i] * cl[i];
return l;
};
// writes a fixed block
// returns the new bit pos
var wfblk = function (out, pos, dat) {
// no need to write 00 as type: TypedArray defaults to 0
var s = dat.length;
var o = shft(pos + 2);
out[o] = s & 255;
out[o + 1] = s >>> 8;
out[o + 2] = out[o] ^ 255;
out[o + 3] = out[o + 1] ^ 255;
for (var i = 0; i < s; ++i)
out[o + i + 4] = dat[i];
return (o + 4 + s) * 8;
};
// writes a block
var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
wbits(out, p++, final);
++lf[256];
var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1];
var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1];
var _c = lc(dlt), lclt = _c[0], nlc = _c[1];
var _d = lc(ddt), lcdt = _d[0], ndc = _d[1];
var lcfreq = new u16(19);
for (var i = 0; i < lclt.length; ++i)
lcfreq[lclt[i] & 31]++;
for (var i = 0; i < lcdt.length; ++i)
lcfreq[lcdt[i] & 31]++;
var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1];
var nlcc = 19;
for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc)
;
var flen = (bl + 5) << 3;
var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
if (flen <= ftlen && flen <= dtlen)
return wfblk(out, p, dat.subarray(bs, bs + bl));
var lm, ll, dm, dl;
wbits(out, p, 1 + (dtlen < ftlen)), p += 2;
if (dtlen < ftlen) {
lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
var llm = hMap(lct, mlcb, 0);
wbits(out, p, nlc - 257);
wbits(out, p + 5, ndc - 1);
wbits(out, p + 10, nlcc - 4);
p += 14;
for (var i = 0; i < nlcc; ++i)
wbits(out, p + 3 * i, lct[clim[i]]);
p += 3 * nlcc;
var lcts = [lclt, lcdt];
for (var it = 0; it < 2; ++it) {
var clct = lcts[it];
for (var i = 0; i < clct.length; ++i) {
var len = clct[i] & 31;
wbits(out, p, llm[len]), p += lct[len];
if (len > 15)
wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12;
}
}
}
else {
lm = flm, ll = flt, dm = fdm, dl = fdt;
}
for (var i = 0; i < li; ++i) {
if (syms[i] > 255) {
var len = (syms[i] >>> 18) & 31;
wbits16(out, p, lm[len + 257]), p += ll[len + 257];
if (len > 7)
wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len];
var dst = syms[i] & 31;
wbits16(out, p, dm[dst]), p += dl[dst];
if (dst > 3)
wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst];
}
else {
wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
}
}
wbits16(out, p, lm[256]);
return p + ll[256];
};
// deflate options (nice << 13) | chain
var deo = /*#__PURE__*/ new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
// empty
var et = /*#__PURE__*/ new u8(0);
// compresses data into a raw DEFLATE buffer
var dflt = function (dat, lvl, plvl, pre, post, lst) {
var s = dat.length;
var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post);
// writing to this writes to the output buffer
var w = o.subarray(pre, o.length - post);
var pos = 0;
if (!lvl || s < 8) {
for (var i = 0; i <= s; i += 65535) {
// end
var e = i + 65535;
if (e < s) {
// write full block
pos = wfblk(w, pos, dat.subarray(i, e));
}
else {
// write final block
w[i] = lst;
pos = wfblk(w, pos, dat.subarray(i, s));
}
}
}
else {
var opt = deo[lvl - 1];
var n = opt >>> 13, c = opt & 8191;
var msk_1 = (1 << plvl) - 1;
// prev 2-byte val map curr 2-byte val map
var prev = new u16(32768), head = new u16(msk_1 + 1);
var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1;
var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; };
// 24576 is an arbitrary number of maximum symbols per block
// 424 buffer for last block
var syms = new u32(25000);
// length/literal freq distance freq
var lf = new u16(288), df = new u16(32);
// l/lcnt exbits index l/lind waitdx bitpos
var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0;
for (; i < s; ++i) {
// hash value
var hv = hsh(i);
// index mod 32768
var imod = i & 32767;
// previous index with this value
var pimod = head[hv];
prev[imod] = pimod;
head[hv] = imod;
// We always should modify head and prev, but only add symbols if
// this data is not yet processed ("wait" for wait index)
if (wi <= i) {
// bytes remaining
var rem = s - i;
if ((lc_1 > 7000 || li > 24576) && rem > 423) {
pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
li = lc_1 = eb = 0, bs = i;
for (var j = 0; j < 286; ++j)
lf[j] = 0;
for (var j = 0; j < 30; ++j)
df[j] = 0;
}
// len dist chain
var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767;
if (rem > 2 && hv == hsh(i - dif)) {
var maxn = Math.min(n, rem) - 1;
var maxd = Math.min(32767, i);
// max possible length
// not capped at dif because decompressors implement "rolling" index population
var ml = Math.min(258, rem);
while (dif <= maxd && --ch_1 && imod != pimod) {
if (dat[i + l] == dat[i + l - dif]) {
var nl = 0;
for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl)
;
if (nl > l) {
l = nl, d = dif;
// break out early when we reach "nice" (we are satisfied enough)
if (nl > maxn)
break;
// now, find the rarest 2-byte sequence within this
// length of literals and search for that instead.
// Much faster than just using the start
var mmd = Math.min(dif, nl - 2);
var md = 0;
for (var j = 0; j < mmd; ++j) {
var ti = (i - dif + j + 32768) & 32767;
var pti = prev[ti];
var cd = (ti - pti + 32768) & 32767;
if (cd > md)
md = cd, pimod = ti;
}
}
}
// check the previous match
imod = pimod, pimod = prev[imod];
dif += (imod - pimod + 32768) & 32767;
}
}
// d will be nonzero only when a match was found
if (d) {
// store both dist and len data in one Uint32
// Make sure this is recognized as a len/dist with 28th bit (2^28)
syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d];
var lin = revfl[l] & 31, din = revfd[d] & 31;
eb += fleb[lin] + fdeb[din];
++lf[257 + lin];
++df[din];
wi = i + l;
++lc_1;
}
else {
syms[li++] = dat[i];
++lf[dat[i]];
}
}
}
pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos);
// this is the easiest way to avoid needing to maintain state
if (!lst)
pos = wfblk(w, pos, et);
}
return slc(o, 0, pre + shft(pos) + post);
};
// Alder32
var adler = function () {
var a = 1, b = 0;
return {
p: function (d) {
// closures have awful performance
var n = a, m = b;
var l = d.length;
for (var i = 0; i != l;) {
var e = Math.min(i + 5552, l);
for (; i < e; ++i)
n += d[i], m += n;
n %= 65521, m %= 65521;
}
a = n, b = m;
},
d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; }
};
};
// deflate with opts
var dopt = function (dat, opt, pre, post, st) {
return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st);
};
// write bytes
var wbytes = function (d, b, v) {
for (; v; ++b)
d[b] = v, v >>>= 8;
};
// zlib header
var zlh = function (c, o) {
var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1);
};
/**
* Compress data with Zlib
* @param data The data to compress
* @param opts The compression options
* @returns The zlib-compressed version of the data
*/
function zlibSync(data, opts) {
if (opts === void 0) { opts = {}; }
var a = adler();
a.p(data);
var d = dopt(data, opts, 2, 4);
return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
}
/**
* Converts a string into a Uint8Array for use with compression/decompression methods
* @param str The string to encode
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless decoding a binary string.
* @returns The string encoded in UTF-8/Latin-1 binary
*/
function strToU8(str, latin1) {
var l = str.length;
if (!latin1 && typeof TextEncoder != 'undefined')
return new TextEncoder().encode(str);
var ar = new u8(str.length + (str.length >>> 1));
var ai = 0;
var w = function (v) { ar[ai++] = v; };
for (var i = 0; i < l; ++i) {
if (ai + 5 > ar.length) {
var n = new u8(ai + 8 + ((l - i) << 1));
n.set(ar);
ar = n;
}
var c = str.charCodeAt(i);
if (c < 128 || latin1)
w(c);
else if (c < 2048)
w(192 | (c >>> 6)), w(128 | (c & 63));
else if (c > 55295 && c < 57344)
c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023),
w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
else
w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
}
return slc(ar, 0, ai);
}
/**
* Converts a Uint8Array to a string
* @param dat The data to decode to string
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless encoding to binary string.
* @returns The original UTF-8/Latin-1 string
*/
function strFromU8(dat, latin1) {
var r = '';
if (!latin1 && typeof TextDecoder != 'undefined')
return new TextDecoder().decode(dat);
for (var i = 0; i < dat.length;) {
var c = dat[i++];
if (c < 128 || latin1)
r += String.fromCharCode(c);
else if (c < 224)
r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63));
else if (c < 240)
r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63));
else
c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536,
r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023));
}
return r;
}
const MARK = 'v1';
const pack = (event) => {
const _e = Object.assign(Object.assign({}, event), { v: MARK });
return strFromU8(zlibSync(strToU8(JSON.stringify(_e))), true);
};
exports.pack = pack;