rrweb
Version:
record and replay the web
694 lines (679 loc) • 29 kB
JavaScript
var rrwebRecord = (function (exports) {
'use strict';
/*! *****************************************************************************
Copyright (c) Microsoft Corporation.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
***************************************************************************** */
var __assign = function() {
__assign = Object.assign || function __assign(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
var NodeType;
(function (NodeType) {
NodeType[NodeType["Document"] = 0] = "Document";
NodeType[NodeType["DocumentType"] = 1] = "DocumentType";
NodeType[NodeType["Element"] = 2] = "Element";
NodeType[NodeType["Text"] = 3] = "Text";
NodeType[NodeType["CDATA"] = 4] = "CDATA";
NodeType[NodeType["Comment"] = 5] = "Comment";
})(NodeType || (NodeType = {}));
var EventType;
(function (EventType) {
EventType[EventType["DomContentLoaded"] = 0] = "DomContentLoaded";
EventType[EventType["Load"] = 1] = "Load";
EventType[EventType["FullSnapshot"] = 2] = "FullSnapshot";
EventType[EventType["IncrementalSnapshot"] = 3] = "IncrementalSnapshot";
EventType[EventType["Meta"] = 4] = "Meta";
EventType[EventType["Custom"] = 5] = "Custom";
})(EventType || (EventType = {}));
var IncrementalSource;
(function (IncrementalSource) {
IncrementalSource[IncrementalSource["Mutation"] = 0] = "Mutation";
IncrementalSource[IncrementalSource["MouseMove"] = 1] = "MouseMove";
IncrementalSource[IncrementalSource["MouseInteraction"] = 2] = "MouseInteraction";
IncrementalSource[IncrementalSource["Scroll"] = 3] = "Scroll";
IncrementalSource[IncrementalSource["ViewportResize"] = 4] = "ViewportResize";
IncrementalSource[IncrementalSource["Input"] = 5] = "Input";
IncrementalSource[IncrementalSource["TouchMove"] = 6] = "TouchMove";
IncrementalSource[IncrementalSource["MediaInteraction"] = 7] = "MediaInteraction";
IncrementalSource[IncrementalSource["StyleSheetRule"] = 8] = "StyleSheetRule";
IncrementalSource[IncrementalSource["CanvasMutation"] = 9] = "CanvasMutation";
IncrementalSource[IncrementalSource["Font"] = 10] = "Font";
IncrementalSource[IncrementalSource["Log"] = 11] = "Log";
})(IncrementalSource || (IncrementalSource = {}));
var MouseInteractions;
(function (MouseInteractions) {
MouseInteractions[MouseInteractions["MouseUp"] = 0] = "MouseUp";
MouseInteractions[MouseInteractions["MouseDown"] = 1] = "MouseDown";
MouseInteractions[MouseInteractions["Click"] = 2] = "Click";
MouseInteractions[MouseInteractions["ContextMenu"] = 3] = "ContextMenu";
MouseInteractions[MouseInteractions["DblClick"] = 4] = "DblClick";
MouseInteractions[MouseInteractions["Focus"] = 5] = "Focus";
MouseInteractions[MouseInteractions["Blur"] = 6] = "Blur";
MouseInteractions[MouseInteractions["TouchStart"] = 7] = "TouchStart";
MouseInteractions[MouseInteractions["TouchMove_Departed"] = 8] = "TouchMove_Departed";
MouseInteractions[MouseInteractions["TouchEnd"] = 9] = "TouchEnd";
})(MouseInteractions || (MouseInteractions = {}));
var MediaInteractions;
(function (MediaInteractions) {
MediaInteractions[MediaInteractions["Play"] = 0] = "Play";
MediaInteractions[MediaInteractions["Pause"] = 1] = "Pause";
})(MediaInteractions || (MediaInteractions = {}));
var ReplayerEvents;
(function (ReplayerEvents) {
ReplayerEvents["Start"] = "start";
ReplayerEvents["Pause"] = "pause";
ReplayerEvents["Resume"] = "resume";
ReplayerEvents["Resize"] = "resize";
ReplayerEvents["Finish"] = "finish";
ReplayerEvents["FullsnapshotRebuilded"] = "fullsnapshot-rebuilded";
ReplayerEvents["LoadStylesheetStart"] = "load-stylesheet-start";
ReplayerEvents["LoadStylesheetEnd"] = "load-stylesheet-end";
ReplayerEvents["SkipStart"] = "skip-start";
ReplayerEvents["SkipEnd"] = "skip-end";
ReplayerEvents["MouseInteraction"] = "mouse-interaction";
ReplayerEvents["EventCast"] = "event-cast";
ReplayerEvents["CustomEvent"] = "custom-event";
ReplayerEvents["Flush"] = "flush";
ReplayerEvents["StateChange"] = "state-change";
})(ReplayerEvents || (ReplayerEvents = {}));
// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
// aliases for shorter compressed code (most minifers don't do this)
var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
// fixed length extra bits
var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
// fixed distance extra bits
// see fleb note
var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
// code length index map
var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
// get base, reverse index map from extra bits
var freb = function (eb, start) {
var b = new u16(31);
for (var i = 0; i < 31; ++i) {
b[i] = start += 1 << eb[i - 1];
}
// numbers here are at max 18 bits
var r = new u32(b[30]);
for (var i = 1; i < 30; ++i) {
for (var j = b[i]; j < b[i + 1]; ++j) {
r[j] = ((j - b[i]) << 5) | i;
}
}
return [b, r];
};
var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1];
// we can ignore the fact that the other numbers are wrong; they never happen anyway
fl[28] = 258, revfl[258] = 28;
var _b = freb(fdeb, 0), revfd = _b[1];
// map of value to reverse (assuming 16 bits)
var rev = new u16(32768);
for (var i = 0; i < 32768; ++i) {
// reverse table algorithm from SO
var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1);
x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2);
x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4);
rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1;
}
// create huffman tree from u8 "map": index -> code length for code index
// mb (max bits) must be at most 15
// TODO: optimize/split up?
var hMap = (function (cd, mb, r) {
var s = cd.length;
// index
var i = 0;
// u16 "map": index -> # of codes with bit length = index
var l = new u16(mb);
// length of cd must be 288 (total # of codes)
for (; i < s; ++i)
++l[cd[i] - 1];
// u16 "map": index -> minimum code for bit length = index
var le = new u16(mb);
for (i = 0; i < mb; ++i) {
le[i] = (le[i - 1] + l[i - 1]) << 1;
}
var co;
if (r) {
// u16 "map": index -> number of actual bits, symbol for code
co = new u16(1 << mb);
// bits to remove for reverser
var rvb = 15 - mb;
for (i = 0; i < s; ++i) {
// ignore 0 lengths
if (cd[i]) {
// num encoding both symbol and bits read
var sv = (i << 4) | cd[i];
// free bits
var r_1 = mb - cd[i];
// start value
var v = le[cd[i] - 1]++ << r_1;
// m is end value
for (var m = v | ((1 << r_1) - 1); v <= m; ++v) {
// every 16 bit value starting with the code yields the same result
co[rev[v] >>> rvb] = sv;
}
}
}
}
else {
co = new u16(s);
for (i = 0; i < s; ++i)
co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
}
return co;
});
// fixed length tree
var flt = new u8(288);
for (var i = 0; i < 144; ++i)
flt[i] = 8;
for (var i = 144; i < 256; ++i)
flt[i] = 9;
for (var i = 256; i < 280; ++i)
flt[i] = 7;
for (var i = 280; i < 288; ++i)
flt[i] = 8;
// fixed distance tree
var fdt = new u8(32);
for (var i = 0; i < 32; ++i)
fdt[i] = 5;
// fixed length map
var flm = hMap(flt, 9, 0), flrm = hMap(flt, 9, 1);
// fixed distance map
var fdm = hMap(fdt, 5, 0), fdrm = hMap(fdt, 5, 1);
// get end of byte
var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); };
// typed array slice - allows garbage collector to free original reference,
// while being more compatible than .slice
var slc = function (v, s, e) {
if (s == null || s < 0)
s = 0;
if (e == null || e > v.length)
e = v.length;
// can't use .constructor in case user-supplied
var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s);
n.set(v.subarray(s, e));
return n;
};
// starting at p, write the minimum number of bits that can hold v to d
var wbits = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) >> 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
};
// starting at p, write the minimum number of bits (>8) that can hold v to d
var wbits16 = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) >> 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
d[o + 2] |= v >>> 16;
};
// creates code lengths from a frequency table
var hTree = function (d, mb) {
// Need extra info to make a tree
var t = [];
for (var i = 0; i < d.length; ++i) {
if (d[i])
t.push({ s: i, f: d[i] });
}
var s = t.length;
var t2 = t.slice();
if (!s)
return [new u8(0), 0];
if (s == 1) {
var v = new u8(t[0].s + 1);
v[t[0].s] = 1;
return [v, 1];
}
t.sort(function (a, b) { return a.f - b.f; });
// after i2 reaches last ind, will be stopped
// freq must be greater than largest possible number of symbols
t.push({ s: -1, f: 25001 });
var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
t[0] = { s: -1, f: l.f + r.f, l: l, r: r };
// efficient algorithm from UZIP.js
// i0 is lookbehind, i2 is lookahead - after processing two low-freq
// symbols that combined have high freq, will start processing i2 (high-freq,
// non-composite) symbols instead
// see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
while (i1 != s - 1) {
l = t[t[i0].f < t[i2].f ? i0++ : i2++];
r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r };
}
var maxSym = t2[0].s;
for (var i = 1; i < s; ++i) {
if (t2[i].s > maxSym)
maxSym = t2[i].s;
}
// code lengths
var tr = new u16(maxSym + 1);
// max bits in tree
var mbt = ln(t[i1 - 1], tr, 0);
if (mbt > mb) {
// more algorithms from UZIP.js
// TODO: find out how this code works (debt)
// ind debt
var i = 0, dt = 0;
// left cost
var lft = mbt - mb, cst = 1 << lft;
t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; });
for (; i < s; ++i) {
var i2_1 = t2[i].s;
if (tr[i2_1] > mb) {
dt += cst - (1 << (mbt - tr[i2_1]));
tr[i2_1] = mb;
}
else
break;
}
dt >>>= lft;
while (dt > 0) {
var i2_2 = t2[i].s;
if (tr[i2_2] < mb)
dt -= 1 << (mb - tr[i2_2]++ - 1);
else
++i;
}
for (; i >= 0 && dt; --i) {
var i2_3 = t2[i].s;
if (tr[i2_3] == mb) {
--tr[i2_3];
++dt;
}
}
mbt = mb;
}
return [new u8(tr), mbt];
};
// get the max length and assign length codes
var ln = function (n, l, d) {
return n.s == -1
? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
: (l[n.s] = d);
};
// length codes generation
var lc = function (c) {
var s = c.length;
// Note that the semicolon was intentional
while (s && !c[--s])
;
var cl = new u16(++s);
// ind num streak
var cli = 0, cln = c[0], cls = 1;
var w = function (v) { cl[cli++] = v; };
for (var i = 1; i <= s; ++i) {
if (c[i] == cln && i != s)
++cls;
else {
if (!cln && cls > 2) {
for (; cls > 138; cls -= 138)
w(32754);
if (cls > 2) {
w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305);
cls = 0;
}
}
else if (cls > 3) {
w(cln), --cls;
for (; cls > 6; cls -= 6)
w(8304);
if (cls > 2)
w(((cls - 3) << 5) | 8208), cls = 0;
}
while (cls--)
w(cln);
cls = 1;
cln = c[i];
}
}
return [cl.subarray(0, cli), s];
};
// calculate the length of output from tree, code lengths
var clen = function (cf, cl) {
var l = 0;
for (var i = 0; i < cl.length; ++i)
l += cf[i] * cl[i];
return l;
};
// writes a fixed block
// returns the new bit pos
var wfblk = function (out, pos, dat) {
// no need to write 00 as type: TypedArray defaults to 0
var s = dat.length;
var o = shft(pos + 2);
out[o] = s & 255;
out[o + 1] = s >>> 8;
out[o + 2] = out[o] ^ 255;
out[o + 3] = out[o + 1] ^ 255;
for (var i = 0; i < s; ++i)
out[o + i + 4] = dat[i];
return (o + 4 + s) * 8;
};
// writes a block
var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
wbits(out, p++, final);
++lf[256];
var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1];
var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1];
var _c = lc(dlt), lclt = _c[0], nlc = _c[1];
var _d = lc(ddt), lcdt = _d[0], ndc = _d[1];
var lcfreq = new u16(19);
for (var i = 0; i < lclt.length; ++i)
lcfreq[lclt[i] & 31]++;
for (var i = 0; i < lcdt.length; ++i)
lcfreq[lcdt[i] & 31]++;
var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1];
var nlcc = 19;
for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc)
;
var flen = (bl + 5) << 3;
var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
if (flen <= ftlen && flen <= dtlen)
return wfblk(out, p, dat.subarray(bs, bs + bl));
var lm, ll, dm, dl;
wbits(out, p, 1 + (dtlen < ftlen)), p += 2;
if (dtlen < ftlen) {
lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
var llm = hMap(lct, mlcb, 0);
wbits(out, p, nlc - 257);
wbits(out, p + 5, ndc - 1);
wbits(out, p + 10, nlcc - 4);
p += 14;
for (var i = 0; i < nlcc; ++i)
wbits(out, p + 3 * i, lct[clim[i]]);
p += 3 * nlcc;
var lcts = [lclt, lcdt];
for (var it = 0; it < 2; ++it) {
var clct = lcts[it];
for (var i = 0; i < clct.length; ++i) {
var len = clct[i] & 31;
wbits(out, p, llm[len]), p += lct[len];
if (len > 15)
wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12;
}
}
}
else {
lm = flm, ll = flt, dm = fdm, dl = fdt;
}
for (var i = 0; i < li; ++i) {
if (syms[i] > 255) {
var len = (syms[i] >>> 18) & 31;
wbits16(out, p, lm[len + 257]), p += ll[len + 257];
if (len > 7)
wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len];
var dst = syms[i] & 31;
wbits16(out, p, dm[dst]), p += dl[dst];
if (dst > 3)
wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst];
}
else {
wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
}
}
wbits16(out, p, lm[256]);
return p + ll[256];
};
// deflate options (nice << 13) | chain
var deo = new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
// empty
var et = new u8(0);
// compresses data into a raw DEFLATE buffer
var dflt = function (dat, lvl, plvl, pre, post, lst) {
var s = dat.length;
var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post);
// writing to this writes to the output buffer
var w = o.subarray(pre, o.length - post);
var pos = 0;
if (!lvl || s < 8) {
for (var i = 0; i <= s; i += 65535) {
// end
var e = i + 65535;
if (e < s) {
// write full block
pos = wfblk(w, pos, dat.subarray(i, e));
}
else {
// write final block
w[i] = lst;
pos = wfblk(w, pos, dat.subarray(i, s));
}
}
}
else {
var opt = deo[lvl - 1];
var n = opt >>> 13, c = opt & 8191;
var msk_1 = (1 << plvl) - 1;
// prev 2-byte val map curr 2-byte val map
var prev = new u16(32768), head = new u16(msk_1 + 1);
var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1;
var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; };
// 24576 is an arbitrary number of maximum symbols per block
// 424 buffer for last block
var syms = new u32(25000);
// length/literal freq distance freq
var lf = new u16(288), df = new u16(32);
// l/lcnt exbits index l/lind waitdx bitpos
var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0;
for (; i < s; ++i) {
// hash value
var hv = hsh(i);
// index mod 32768
var imod = i & 32767;
// previous index with this value
var pimod = head[hv];
prev[imod] = pimod;
head[hv] = imod;
// We always should modify head and prev, but only add symbols if
// this data is not yet processed ("wait" for wait index)
if (wi <= i) {
// bytes remaining
var rem = s - i;
if ((lc_1 > 7000 || li > 24576) && rem > 423) {
pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
li = lc_1 = eb = 0, bs = i;
for (var j = 0; j < 286; ++j)
lf[j] = 0;
for (var j = 0; j < 30; ++j)
df[j] = 0;
}
// len dist chain
var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767;
if (rem > 2 && hv == hsh(i - dif)) {
var maxn = Math.min(n, rem) - 1;
var maxd = Math.min(32767, i);
// max possible length
// not capped at dif because decompressors implement "rolling" index population
var ml = Math.min(258, rem);
while (dif <= maxd && --ch_1 && imod != pimod) {
if (dat[i + l] == dat[i + l - dif]) {
var nl = 0;
for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl)
;
if (nl > l) {
l = nl, d = dif;
// break out early when we reach "nice" (we are satisfied enough)
if (nl > maxn)
break;
// now, find the rarest 2-byte sequence within this
// length of literals and search for that instead.
// Much faster than just using the start
var mmd = Math.min(dif, nl - 2);
var md = 0;
for (var j = 0; j < mmd; ++j) {
var ti = (i - dif + j + 32768) & 32767;
var pti = prev[ti];
var cd = (ti - pti + 32768) & 32767;
if (cd > md)
md = cd, pimod = ti;
}
}
}
// check the previous match
imod = pimod, pimod = prev[imod];
dif += (imod - pimod + 32768) & 32767;
}
}
// d will be nonzero only when a match was found
if (d) {
// store both dist and len data in one Uint32
// Make sure this is recognized as a len/dist with 28th bit (2^28)
syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d];
var lin = revfl[l] & 31, din = revfd[d] & 31;
eb += fleb[lin] + fdeb[din];
++lf[257 + lin];
++df[din];
wi = i + l;
++lc_1;
}
else {
syms[li++] = dat[i];
++lf[dat[i]];
}
}
}
pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos);
// this is the easiest way to avoid needing to maintain state
if (!lst)
pos = wfblk(w, pos, et);
}
return slc(o, 0, pre + shft(pos) + post);
};
// CRC32 table
var crct = new u32(256);
for (var i = 0; i < 256; ++i) {
var c = i, k = 9;
while (--k)
c = ((c & 1) && 0xEDB88320) ^ (c >>> 1);
crct[i] = c;
}
// Alder32
var adler = function () {
var a = 1, b = 0;
return {
p: function (d) {
// closures have awful performance
var n = a, m = b;
var l = d.length;
for (var i = 0; i != l;) {
var e = Math.min(i + 5552, l);
for (; i < e; ++i)
n += d[i], m += n;
n %= 65521, m %= 65521;
}
a = n, b = m;
},
d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; }
};
};
// deflate with opts
var dopt = function (dat, opt, pre, post, st) {
return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st);
};
// write bytes
var wbytes = function (d, b, v) {
for (; v; ++b)
d[b] = v, v >>>= 8;
};
// zlib header
var zlh = function (c, o) {
var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1);
};
/**
* Compress data with Zlib
* @param data The data to compress
* @param opts The compression options
* @returns The zlib-compressed version of the data
*/
function zlibSync(data, opts) {
if (opts === void 0) { opts = {}; }
var a = adler();
a.p(data);
var d = dopt(data, opts, 2, 4);
return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
}
/**
* Converts a string into a Uint8Array for use with compression/decompression methods
* @param str The string to encode
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless decoding a binary string.
* @returns The string encoded in UTF-8/Latin-1 binary
*/
function strToU8(str, latin1) {
var l = str.length;
if (!latin1 && typeof TextEncoder != 'undefined')
return new TextEncoder().encode(str);
var ar = new u8(str.length + (str.length >>> 1));
var ai = 0;
var w = function (v) { ar[ai++] = v; };
for (var i = 0; i < l; ++i) {
if (ai + 5 > ar.length) {
var n = new u8(ai + 8 + ((l - i) << 1));
n.set(ar);
ar = n;
}
var c = str.charCodeAt(i);
if (c < 128 || latin1)
w(c);
else if (c < 2048)
w(192 | (c >>> 6)), w(128 | (c & 63));
else if (c > 55295 && c < 57344)
c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023),
w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
else
w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
}
return slc(ar, 0, ai);
}
/**
* Converts a Uint8Array to a string
* @param dat The data to decode to string
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless encoding to binary string.
* @returns The original UTF-8/Latin-1 string
*/
function strFromU8(dat, latin1) {
var r = '';
if (!latin1 && typeof TextDecoder != 'undefined')
return new TextDecoder().decode(dat);
for (var i = 0; i < dat.length;) {
var c = dat[i++];
if (c < 128 || latin1)
r += String.fromCharCode(c);
else if (c < 224)
r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63));
else if (c < 240)
r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63));
else
c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536,
r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023));
}
return r;
}
var MARK = 'v1';
var pack = function (event) {
var _e = __assign(__assign({}, event), { v: MARK });
return strFromU8(zlibSync(strToU8(JSON.stringify(_e))), true);
};
exports.pack = pack;
Object.defineProperty(exports, '__esModule', { value: true });
return exports;
}({}));