UNPKG

rrweb

Version:
694 lines (679 loc) 29 kB
var rrwebRecord = (function (exports) { 'use strict'; /*! ***************************************************************************** Copyright (c) Microsoft Corporation. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ***************************************************************************** */ var __assign = function() { __assign = Object.assign || function __assign(t) { for (var s, i = 1, n = arguments.length; i < n; i++) { s = arguments[i]; for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p]; } return t; }; return __assign.apply(this, arguments); }; var NodeType; (function (NodeType) { NodeType[NodeType["Document"] = 0] = "Document"; NodeType[NodeType["DocumentType"] = 1] = "DocumentType"; NodeType[NodeType["Element"] = 2] = "Element"; NodeType[NodeType["Text"] = 3] = "Text"; NodeType[NodeType["CDATA"] = 4] = "CDATA"; NodeType[NodeType["Comment"] = 5] = "Comment"; })(NodeType || (NodeType = {})); var EventType; (function (EventType) { EventType[EventType["DomContentLoaded"] = 0] = "DomContentLoaded"; EventType[EventType["Load"] = 1] = "Load"; EventType[EventType["FullSnapshot"] = 2] = "FullSnapshot"; EventType[EventType["IncrementalSnapshot"] = 3] = "IncrementalSnapshot"; EventType[EventType["Meta"] = 4] = "Meta"; EventType[EventType["Custom"] = 5] = "Custom"; })(EventType || (EventType = {})); var IncrementalSource; (function (IncrementalSource) { IncrementalSource[IncrementalSource["Mutation"] = 0] = "Mutation"; IncrementalSource[IncrementalSource["MouseMove"] = 1] = "MouseMove"; IncrementalSource[IncrementalSource["MouseInteraction"] = 2] = "MouseInteraction"; IncrementalSource[IncrementalSource["Scroll"] = 3] = "Scroll"; IncrementalSource[IncrementalSource["ViewportResize"] = 4] = "ViewportResize"; IncrementalSource[IncrementalSource["Input"] = 5] = "Input"; IncrementalSource[IncrementalSource["TouchMove"] = 6] = "TouchMove"; IncrementalSource[IncrementalSource["MediaInteraction"] = 7] = "MediaInteraction"; IncrementalSource[IncrementalSource["StyleSheetRule"] = 8] = "StyleSheetRule"; IncrementalSource[IncrementalSource["CanvasMutation"] = 9] = "CanvasMutation"; IncrementalSource[IncrementalSource["Font"] = 10] = "Font"; IncrementalSource[IncrementalSource["Log"] = 11] = "Log"; })(IncrementalSource || (IncrementalSource = {})); var MouseInteractions; (function (MouseInteractions) { MouseInteractions[MouseInteractions["MouseUp"] = 0] = "MouseUp"; MouseInteractions[MouseInteractions["MouseDown"] = 1] = "MouseDown"; MouseInteractions[MouseInteractions["Click"] = 2] = "Click"; MouseInteractions[MouseInteractions["ContextMenu"] = 3] = "ContextMenu"; MouseInteractions[MouseInteractions["DblClick"] = 4] = "DblClick"; MouseInteractions[MouseInteractions["Focus"] = 5] = "Focus"; MouseInteractions[MouseInteractions["Blur"] = 6] = "Blur"; MouseInteractions[MouseInteractions["TouchStart"] = 7] = "TouchStart"; MouseInteractions[MouseInteractions["TouchMove_Departed"] = 8] = "TouchMove_Departed"; MouseInteractions[MouseInteractions["TouchEnd"] = 9] = "TouchEnd"; })(MouseInteractions || (MouseInteractions = {})); var MediaInteractions; (function (MediaInteractions) { MediaInteractions[MediaInteractions["Play"] = 0] = "Play"; MediaInteractions[MediaInteractions["Pause"] = 1] = "Pause"; })(MediaInteractions || (MediaInteractions = {})); var ReplayerEvents; (function (ReplayerEvents) { ReplayerEvents["Start"] = "start"; ReplayerEvents["Pause"] = "pause"; ReplayerEvents["Resume"] = "resume"; ReplayerEvents["Resize"] = "resize"; ReplayerEvents["Finish"] = "finish"; ReplayerEvents["FullsnapshotRebuilded"] = "fullsnapshot-rebuilded"; ReplayerEvents["LoadStylesheetStart"] = "load-stylesheet-start"; ReplayerEvents["LoadStylesheetEnd"] = "load-stylesheet-end"; ReplayerEvents["SkipStart"] = "skip-start"; ReplayerEvents["SkipEnd"] = "skip-end"; ReplayerEvents["MouseInteraction"] = "mouse-interaction"; ReplayerEvents["EventCast"] = "event-cast"; ReplayerEvents["CustomEvent"] = "custom-event"; ReplayerEvents["Flush"] = "flush"; ReplayerEvents["StateChange"] = "state-change"; })(ReplayerEvents || (ReplayerEvents = {})); // DEFLATE is a complex format; to read this code, you should probably check the RFC first: // aliases for shorter compressed code (most minifers don't do this) var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array; // fixed length extra bits var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]); // fixed distance extra bits // see fleb note var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]); // code length index map var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); // get base, reverse index map from extra bits var freb = function (eb, start) { var b = new u16(31); for (var i = 0; i < 31; ++i) { b[i] = start += 1 << eb[i - 1]; } // numbers here are at max 18 bits var r = new u32(b[30]); for (var i = 1; i < 30; ++i) { for (var j = b[i]; j < b[i + 1]; ++j) { r[j] = ((j - b[i]) << 5) | i; } } return [b, r]; }; var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1]; // we can ignore the fact that the other numbers are wrong; they never happen anyway fl[28] = 258, revfl[258] = 28; var _b = freb(fdeb, 0), revfd = _b[1]; // map of value to reverse (assuming 16 bits) var rev = new u16(32768); for (var i = 0; i < 32768; ++i) { // reverse table algorithm from SO var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1); x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2); x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4); rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1; } // create huffman tree from u8 "map": index -> code length for code index // mb (max bits) must be at most 15 // TODO: optimize/split up? var hMap = (function (cd, mb, r) { var s = cd.length; // index var i = 0; // u16 "map": index -> # of codes with bit length = index var l = new u16(mb); // length of cd must be 288 (total # of codes) for (; i < s; ++i) ++l[cd[i] - 1]; // u16 "map": index -> minimum code for bit length = index var le = new u16(mb); for (i = 0; i < mb; ++i) { le[i] = (le[i - 1] + l[i - 1]) << 1; } var co; if (r) { // u16 "map": index -> number of actual bits, symbol for code co = new u16(1 << mb); // bits to remove for reverser var rvb = 15 - mb; for (i = 0; i < s; ++i) { // ignore 0 lengths if (cd[i]) { // num encoding both symbol and bits read var sv = (i << 4) | cd[i]; // free bits var r_1 = mb - cd[i]; // start value var v = le[cd[i] - 1]++ << r_1; // m is end value for (var m = v | ((1 << r_1) - 1); v <= m; ++v) { // every 16 bit value starting with the code yields the same result co[rev[v] >>> rvb] = sv; } } } } else { co = new u16(s); for (i = 0; i < s; ++i) co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]); } return co; }); // fixed length tree var flt = new u8(288); for (var i = 0; i < 144; ++i) flt[i] = 8; for (var i = 144; i < 256; ++i) flt[i] = 9; for (var i = 256; i < 280; ++i) flt[i] = 7; for (var i = 280; i < 288; ++i) flt[i] = 8; // fixed distance tree var fdt = new u8(32); for (var i = 0; i < 32; ++i) fdt[i] = 5; // fixed length map var flm = hMap(flt, 9, 0), flrm = hMap(flt, 9, 1); // fixed distance map var fdm = hMap(fdt, 5, 0), fdrm = hMap(fdt, 5, 1); // get end of byte var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); }; // typed array slice - allows garbage collector to free original reference, // while being more compatible than .slice var slc = function (v, s, e) { if (s == null || s < 0) s = 0; if (e == null || e > v.length) e = v.length; // can't use .constructor in case user-supplied var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s); n.set(v.subarray(s, e)); return n; }; // starting at p, write the minimum number of bits that can hold v to d var wbits = function (d, p, v) { v <<= p & 7; var o = (p / 8) >> 0; d[o] |= v; d[o + 1] |= v >>> 8; }; // starting at p, write the minimum number of bits (>8) that can hold v to d var wbits16 = function (d, p, v) { v <<= p & 7; var o = (p / 8) >> 0; d[o] |= v; d[o + 1] |= v >>> 8; d[o + 2] |= v >>> 16; }; // creates code lengths from a frequency table var hTree = function (d, mb) { // Need extra info to make a tree var t = []; for (var i = 0; i < d.length; ++i) { if (d[i]) t.push({ s: i, f: d[i] }); } var s = t.length; var t2 = t.slice(); if (!s) return [new u8(0), 0]; if (s == 1) { var v = new u8(t[0].s + 1); v[t[0].s] = 1; return [v, 1]; } t.sort(function (a, b) { return a.f - b.f; }); // after i2 reaches last ind, will be stopped // freq must be greater than largest possible number of symbols t.push({ s: -1, f: 25001 }); var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2; t[0] = { s: -1, f: l.f + r.f, l: l, r: r }; // efficient algorithm from UZIP.js // i0 is lookbehind, i2 is lookahead - after processing two low-freq // symbols that combined have high freq, will start processing i2 (high-freq, // non-composite) symbols instead // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/ while (i1 != s - 1) { l = t[t[i0].f < t[i2].f ? i0++ : i2++]; r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++]; t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r }; } var maxSym = t2[0].s; for (var i = 1; i < s; ++i) { if (t2[i].s > maxSym) maxSym = t2[i].s; } // code lengths var tr = new u16(maxSym + 1); // max bits in tree var mbt = ln(t[i1 - 1], tr, 0); if (mbt > mb) { // more algorithms from UZIP.js // TODO: find out how this code works (debt) // ind debt var i = 0, dt = 0; // left cost var lft = mbt - mb, cst = 1 << lft; t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; }); for (; i < s; ++i) { var i2_1 = t2[i].s; if (tr[i2_1] > mb) { dt += cst - (1 << (mbt - tr[i2_1])); tr[i2_1] = mb; } else break; } dt >>>= lft; while (dt > 0) { var i2_2 = t2[i].s; if (tr[i2_2] < mb) dt -= 1 << (mb - tr[i2_2]++ - 1); else ++i; } for (; i >= 0 && dt; --i) { var i2_3 = t2[i].s; if (tr[i2_3] == mb) { --tr[i2_3]; ++dt; } } mbt = mb; } return [new u8(tr), mbt]; }; // get the max length and assign length codes var ln = function (n, l, d) { return n.s == -1 ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1)) : (l[n.s] = d); }; // length codes generation var lc = function (c) { var s = c.length; // Note that the semicolon was intentional while (s && !c[--s]) ; var cl = new u16(++s); // ind num streak var cli = 0, cln = c[0], cls = 1; var w = function (v) { cl[cli++] = v; }; for (var i = 1; i <= s; ++i) { if (c[i] == cln && i != s) ++cls; else { if (!cln && cls > 2) { for (; cls > 138; cls -= 138) w(32754); if (cls > 2) { w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305); cls = 0; } } else if (cls > 3) { w(cln), --cls; for (; cls > 6; cls -= 6) w(8304); if (cls > 2) w(((cls - 3) << 5) | 8208), cls = 0; } while (cls--) w(cln); cls = 1; cln = c[i]; } } return [cl.subarray(0, cli), s]; }; // calculate the length of output from tree, code lengths var clen = function (cf, cl) { var l = 0; for (var i = 0; i < cl.length; ++i) l += cf[i] * cl[i]; return l; }; // writes a fixed block // returns the new bit pos var wfblk = function (out, pos, dat) { // no need to write 00 as type: TypedArray defaults to 0 var s = dat.length; var o = shft(pos + 2); out[o] = s & 255; out[o + 1] = s >>> 8; out[o + 2] = out[o] ^ 255; out[o + 3] = out[o + 1] ^ 255; for (var i = 0; i < s; ++i) out[o + i + 4] = dat[i]; return (o + 4 + s) * 8; }; // writes a block var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) { wbits(out, p++, final); ++lf[256]; var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1]; var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1]; var _c = lc(dlt), lclt = _c[0], nlc = _c[1]; var _d = lc(ddt), lcdt = _d[0], ndc = _d[1]; var lcfreq = new u16(19); for (var i = 0; i < lclt.length; ++i) lcfreq[lclt[i] & 31]++; for (var i = 0; i < lcdt.length; ++i) lcfreq[lcdt[i] & 31]++; var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1]; var nlcc = 19; for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc) ; var flen = (bl + 5) << 3; var ftlen = clen(lf, flt) + clen(df, fdt) + eb; var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]); if (flen <= ftlen && flen <= dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl)); var lm, ll, dm, dl; wbits(out, p, 1 + (dtlen < ftlen)), p += 2; if (dtlen < ftlen) { lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt; var llm = hMap(lct, mlcb, 0); wbits(out, p, nlc - 257); wbits(out, p + 5, ndc - 1); wbits(out, p + 10, nlcc - 4); p += 14; for (var i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]); p += 3 * nlcc; var lcts = [lclt, lcdt]; for (var it = 0; it < 2; ++it) { var clct = lcts[it]; for (var i = 0; i < clct.length; ++i) { var len = clct[i] & 31; wbits(out, p, llm[len]), p += lct[len]; if (len > 15) wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12; } } } else { lm = flm, ll = flt, dm = fdm, dl = fdt; } for (var i = 0; i < li; ++i) { if (syms[i] > 255) { var len = (syms[i] >>> 18) & 31; wbits16(out, p, lm[len + 257]), p += ll[len + 257]; if (len > 7) wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len]; var dst = syms[i] & 31; wbits16(out, p, dm[dst]), p += dl[dst]; if (dst > 3) wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst]; } else { wbits16(out, p, lm[syms[i]]), p += ll[syms[i]]; } } wbits16(out, p, lm[256]); return p + ll[256]; }; // deflate options (nice << 13) | chain var deo = new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]); // empty var et = new u8(0); // compresses data into a raw DEFLATE buffer var dflt = function (dat, lvl, plvl, pre, post, lst) { var s = dat.length; var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post); // writing to this writes to the output buffer var w = o.subarray(pre, o.length - post); var pos = 0; if (!lvl || s < 8) { for (var i = 0; i <= s; i += 65535) { // end var e = i + 65535; if (e < s) { // write full block pos = wfblk(w, pos, dat.subarray(i, e)); } else { // write final block w[i] = lst; pos = wfblk(w, pos, dat.subarray(i, s)); } } } else { var opt = deo[lvl - 1]; var n = opt >>> 13, c = opt & 8191; var msk_1 = (1 << plvl) - 1; // prev 2-byte val map curr 2-byte val map var prev = new u16(32768), head = new u16(msk_1 + 1); var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1; var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; }; // 24576 is an arbitrary number of maximum symbols per block // 424 buffer for last block var syms = new u32(25000); // length/literal freq distance freq var lf = new u16(288), df = new u16(32); // l/lcnt exbits index l/lind waitdx bitpos var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0; for (; i < s; ++i) { // hash value var hv = hsh(i); // index mod 32768 var imod = i & 32767; // previous index with this value var pimod = head[hv]; prev[imod] = pimod; head[hv] = imod; // We always should modify head and prev, but only add symbols if // this data is not yet processed ("wait" for wait index) if (wi <= i) { // bytes remaining var rem = s - i; if ((lc_1 > 7000 || li > 24576) && rem > 423) { pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos); li = lc_1 = eb = 0, bs = i; for (var j = 0; j < 286; ++j) lf[j] = 0; for (var j = 0; j < 30; ++j) df[j] = 0; } // len dist chain var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767; if (rem > 2 && hv == hsh(i - dif)) { var maxn = Math.min(n, rem) - 1; var maxd = Math.min(32767, i); // max possible length // not capped at dif because decompressors implement "rolling" index population var ml = Math.min(258, rem); while (dif <= maxd && --ch_1 && imod != pimod) { if (dat[i + l] == dat[i + l - dif]) { var nl = 0; for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl) ; if (nl > l) { l = nl, d = dif; // break out early when we reach "nice" (we are satisfied enough) if (nl > maxn) break; // now, find the rarest 2-byte sequence within this // length of literals and search for that instead. // Much faster than just using the start var mmd = Math.min(dif, nl - 2); var md = 0; for (var j = 0; j < mmd; ++j) { var ti = (i - dif + j + 32768) & 32767; var pti = prev[ti]; var cd = (ti - pti + 32768) & 32767; if (cd > md) md = cd, pimod = ti; } } } // check the previous match imod = pimod, pimod = prev[imod]; dif += (imod - pimod + 32768) & 32767; } } // d will be nonzero only when a match was found if (d) { // store both dist and len data in one Uint32 // Make sure this is recognized as a len/dist with 28th bit (2^28) syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d]; var lin = revfl[l] & 31, din = revfd[d] & 31; eb += fleb[lin] + fdeb[din]; ++lf[257 + lin]; ++df[din]; wi = i + l; ++lc_1; } else { syms[li++] = dat[i]; ++lf[dat[i]]; } } } pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos); // this is the easiest way to avoid needing to maintain state if (!lst) pos = wfblk(w, pos, et); } return slc(o, 0, pre + shft(pos) + post); }; // CRC32 table var crct = new u32(256); for (var i = 0; i < 256; ++i) { var c = i, k = 9; while (--k) c = ((c & 1) && 0xEDB88320) ^ (c >>> 1); crct[i] = c; } // Alder32 var adler = function () { var a = 1, b = 0; return { p: function (d) { // closures have awful performance var n = a, m = b; var l = d.length; for (var i = 0; i != l;) { var e = Math.min(i + 5552, l); for (; i < e; ++i) n += d[i], m += n; n %= 65521, m %= 65521; } a = n, b = m; }, d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; } }; }; // deflate with opts var dopt = function (dat, opt, pre, post, st) { return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st); }; // write bytes var wbytes = function (d, b, v) { for (; v; ++b) d[b] = v, v >>>= 8; }; // zlib header var zlh = function (c, o) { var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2; c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1); }; /** * Compress data with Zlib * @param data The data to compress * @param opts The compression options * @returns The zlib-compressed version of the data */ function zlibSync(data, opts) { if (opts === void 0) { opts = {}; } var a = adler(); a.p(data); var d = dopt(data, opts, 2, 4); return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d; } /** * Converts a string into a Uint8Array for use with compression/decompression methods * @param str The string to encode * @param latin1 Whether or not to interpret the data as Latin-1. This should * not need to be true unless decoding a binary string. * @returns The string encoded in UTF-8/Latin-1 binary */ function strToU8(str, latin1) { var l = str.length; if (!latin1 && typeof TextEncoder != 'undefined') return new TextEncoder().encode(str); var ar = new u8(str.length + (str.length >>> 1)); var ai = 0; var w = function (v) { ar[ai++] = v; }; for (var i = 0; i < l; ++i) { if (ai + 5 > ar.length) { var n = new u8(ai + 8 + ((l - i) << 1)); n.set(ar); ar = n; } var c = str.charCodeAt(i); if (c < 128 || latin1) w(c); else if (c < 2048) w(192 | (c >>> 6)), w(128 | (c & 63)); else if (c > 55295 && c < 57344) c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023), w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63)); else w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63)); } return slc(ar, 0, ai); } /** * Converts a Uint8Array to a string * @param dat The data to decode to string * @param latin1 Whether or not to interpret the data as Latin-1. This should * not need to be true unless encoding to binary string. * @returns The original UTF-8/Latin-1 string */ function strFromU8(dat, latin1) { var r = ''; if (!latin1 && typeof TextDecoder != 'undefined') return new TextDecoder().decode(dat); for (var i = 0; i < dat.length;) { var c = dat[i++]; if (c < 128 || latin1) r += String.fromCharCode(c); else if (c < 224) r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63)); else if (c < 240) r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)); else c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536, r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023)); } return r; } var MARK = 'v1'; var pack = function (event) { var _e = __assign(__assign({}, event), { v: MARK }); return strFromU8(zlibSync(strToU8(JSON.stringify(_e))), true); }; exports.pack = pack; Object.defineProperty(exports, '__esModule', { value: true }); return exports; }({}));