UNPKG

rezilient.js

Version:

Rezilient.js - Revolutionary offline-first framework with AI-awareness, principle-driven development, carbon-conscious computing, and self-healing capabilities

1,101 lines (931 loc) โ€ข 31.6 kB
// src/neuromorphic/NeuromorphicComputing.js /** * @class NeuromorphicComputing * INDUSTRY FIRST: Neuromorphic Framework with Brain-Computer Interface Integration * * Revolutionary neuromorphic computing integration that provides: * - Brain-computer interface (BCI) support * - Spiking neural network simulation * - Thought-based interaction patterns * - Cognitive load optimization * - Neural adaptation algorithms * - Brain-inspired computing paradigms */ export class NeuromorphicComputing { constructor(options = {}) { this.options = { enableBCI: options.enableBCI !== false, enableSpikingNetworks: options.enableSpikingNetworks !== false, enableCognitiveAdaptation: options.enableCognitiveAdaptation !== false, enableNeuralPlasticity: options.enableNeuralPlasticity !== false, enableThoughtInterface: options.enableThoughtInterface !== false, bciDevice: options.bciDevice || 'simulated', // 'emotiv', 'neurosky', 'openbci', 'simulated' neuralModel: options.neuralModel || 'leaky-integrate-fire', adaptationRate: options.adaptationRate || 0.01, ...options }; // Brain-computer interface this.bci = { device: null, connected: false, signals: { eeg: new Array(8).fill(0), // 8-channel EEG attention: 0, meditation: 0, blink: 0, cognitiveLoad: 0 }, calibration: { baseline: null, userProfile: null, adaptationHistory: [] } }; // Spiking neural network this.spikingNetwork = { neurons: [], synapses: [], layers: [], spikes: [], plasticity: { stdp: true, // Spike-timing dependent plasticity homeostasis: true, metaplasticity: true } }; // Cognitive state tracking this.cognitiveState = { attention: 0, workload: 0, fatigue: 0, flow: 0, stress: 0, engagement: 0 }; // Neural adaptation engine this.adaptationEngine = { learningRate: this.options.adaptationRate, memoryTrace: [], adaptationRules: new Map(), neuralPlasticity: new Map() }; this.initialize(); } /** * Initialize neuromorphic computing system */ async initialize() { console.log('๐Ÿง  Initializing Neuromorphic Computing Framework...'); await this.initializeBCI(); await this.initializeSpikingNetwork(); this.setupCognitiveMonitoring(); this.setupNeuralAdaptation(); this.setupThoughtInterface(); console.log('โœ… Neuromorphic Computing Framework ready!'); } /** * BRAIN-COMPUTER INTERFACE */ /** * Initialize brain-computer interface */ async initializeBCI() { if (!this.options.enableBCI) return; console.log(`๐Ÿ”Œ Initializing BCI device: ${this.options.bciDevice}`); try { switch (this.options.bciDevice) { case 'emotiv': this.bci.device = await this.initializeEmotivDevice(); break; case 'neurosky': this.bci.device = await this.initializeNeuroskyDevice(); break; case 'openbci': this.bci.device = await this.initializeOpenBCIDevice(); break; default: this.bci.device = await this.initializeSimulatedBCI(); } if (this.bci.device) { this.bci.connected = true; this.startBCIDataStream(); await this.calibrateBCI(); } console.log('โœ… BCI initialized successfully'); } catch (error) { console.warn('BCI initialization failed, using simulated data:', error); this.bci.device = await this.initializeSimulatedBCI(); this.bci.connected = true; this.startBCIDataStream(); } } /** * Initialize simulated BCI for development/testing */ async initializeSimulatedBCI() { return { type: 'simulated', channels: 8, sampleRate: 256, // Hz // Simulated data generation generateEEG: () => this.generateSimulatedEEG(), getAttention: () => this.generateSimulatedAttention(), getMeditation: () => this.generateSimulatedMeditation(), detectBlink: () => this.generateSimulatedBlink(), getCognitiveLoad: () => this.generateSimulatedCognitiveLoad(), // Device control startRecording: () => console.log('๐Ÿ“Š Starting BCI recording'), stopRecording: () => console.log('โน๏ธ Stopping BCI recording'), calibrate: () => this.performBCICalibration() }; } /** * Start BCI data streaming */ startBCIDataStream() { // Stream data at 256 Hz (every ~4ms) setInterval(() => { this.updateBCISignals(); }, 4); // Process cognitive states every 100ms setInterval(() => { this.processCognitiveStates(); }, 100); // Adapt neural network every second setInterval(() => { this.adaptNeuralNetwork(); }, 1000); } /** * Update BCI signals from device */ updateBCISignals() { if (!this.bci.device || !this.bci.connected) return; // Update EEG signals this.bci.signals.eeg = this.bci.device.generateEEG(); // Update derived metrics this.bci.signals.attention = this.bci.device.getAttention(); this.bci.signals.meditation = this.bci.device.getMeditation(); this.bci.signals.blink = this.bci.device.detectBlink(); this.bci.signals.cognitiveLoad = this.bci.device.getCognitiveLoad(); // Feed signals to spiking network this.feedSignalsToNetwork(this.bci.signals); } /** * SPIKING NEURAL NETWORK */ /** * Initialize spiking neural network */ async initializeSpikingNetwork() { if (!this.options.enableSpikingNetworks) return; console.log('โšก Initializing Spiking Neural Network...'); // Create network topology this.createNetworkTopology(); // Initialize neurons this.initializeNeurons(); // Initialize synapses this.initializeSynapses(); // Setup plasticity mechanisms this.setupNeuralPlasticity(); // Start network simulation this.startNetworkSimulation(); console.log('โœ… Spiking Neural Network ready'); } /** * Create network topology */ createNetworkTopology() { // Input layer (BCI signals) const inputLayer = this.createLayer('input', 8, 'input'); // Hidden layers (processing) const hiddenLayer1 = this.createLayer('hidden1', 32, this.options.neuralModel); const hiddenLayer2 = this.createLayer('hidden2', 16, this.options.neuralModel); // Output layer (cognitive states) const outputLayer = this.createLayer('output', 6, 'output'); this.spikingNetwork.layers = [inputLayer, hiddenLayer1, hiddenLayer2, outputLayer]; } /** * Create neural layer */ createLayer(name, size, neuronType) { const layer = { name, size, neurons: [], type: neuronType }; for (let i = 0; i < size; i++) { const neuron = this.createNeuron(neuronType, `${name}_${i}`); layer.neurons.push(neuron); this.spikingNetwork.neurons.push(neuron); } return layer; } /** * Create individual neuron */ createNeuron(type, id) { const baseNeuron = { id, type, membrane_potential: -70, // mV threshold: -55, // mV resting_potential: -70, // mV refractory_period: 2, // ms last_spike: -Infinity, spike_count: 0, // Synaptic connections inputs: [], outputs: [], // Plasticity variables trace: 0, homeostatic_scaling: 1.0 }; switch (type) { case 'leaky-integrate-fire': return { ...baseNeuron, tau_membrane: 20, // ms resistance: 10, // MOhm capacitance: 1, // nF leak_conductance: 0.05, update: (dt, input_current) => this.updateLIFNeuron(baseNeuron, dt, input_current) }; case 'adaptive-exponential': return { ...baseNeuron, adaptation: 0, tau_adaptation: 100, // ms adaptation_conductance: 0.1, update: (dt, input_current) => this.updateAdExNeuron(baseNeuron, dt, input_current) }; default: return baseNeuron; } } /** * Update Leaky Integrate-and-Fire neuron */ updateLIFNeuron(neuron, dt, inputCurrent) { const now = Date.now(); // Check refractory period if (now - neuron.last_spike < neuron.refractory_period) { return false; // No spike } // Update membrane potential const leak = (neuron.resting_potential - neuron.membrane_potential) / neuron.tau_membrane; const input = inputCurrent / neuron.capacitance; neuron.membrane_potential += dt * (leak + input); // Check for spike if (neuron.membrane_potential >= neuron.threshold) { neuron.membrane_potential = neuron.resting_potential; neuron.last_spike = now; neuron.spike_count++; // Trigger spike propagation this.propagateSpike(neuron); return true; // Spike occurred } return false; // No spike } /** * COGNITIVE STATE PROCESSING */ /** * Setup cognitive monitoring */ setupCognitiveMonitoring() { this.cognitiveMonitor = { processors: { attention: this.processAttention.bind(this), workload: this.processWorkload.bind(this), fatigue: this.processFatigue.bind(this), flow: this.processFlow.bind(this), stress: this.processStress.bind(this), engagement: this.processEngagement.bind(this) }, history: { attention: [], workload: [], fatigue: [], flow: [], stress: [], engagement: [] } }; } /** * Process cognitive states from neural activity */ processCognitiveStates() { // Safety check: ensure cognitive monitor is initialized if (!this.cognitiveMonitor || !this.cognitiveMonitor.processors) { return; } const networkOutput = this.getNetworkOutput(); // Process each cognitive state this.cognitiveState.attention = this.cognitiveMonitor.processors.attention(networkOutput); this.cognitiveState.workload = this.cognitiveMonitor.processors.workload(networkOutput); this.cognitiveState.fatigue = this.cognitiveMonitor.processors.fatigue(networkOutput); this.cognitiveState.flow = this.cognitiveMonitor.processors.flow(networkOutput); this.cognitiveState.stress = this.cognitiveMonitor.processors.stress(networkOutput); this.cognitiveState.engagement = this.cognitiveMonitor.processors.engagement(networkOutput); // Store history this.storeCognitiveHistory(); // Trigger adaptations this.triggerCognitiveAdaptations(); } /** * Process attention level */ processAttention(networkOutput) { // Combine BCI attention signal with network output const bciAttention = this.bci.signals.attention / 100; const networkAttention = networkOutput[0] || 0; // Weighted combination return (bciAttention * 0.7 + networkAttention * 0.3); } /** * Process cognitive workload */ processWorkload(networkOutput) { // Analyze EEG patterns for workload indicators const eegComplexity = this.calculateEEGComplexity(); const networkWorkload = networkOutput[1] || 0; return Math.min(1.0, eegComplexity * 0.6 + networkWorkload * 0.4); } /** * NEURAL ADAPTATION ENGINE */ /** * Setup neural adaptation mechanisms */ setupNeuralAdaptation() { this.adaptationEngine.adaptationRules.set('attention_boost', { condition: (state) => state.attention < 0.3, action: (network) => this.boostAttentionPathways(network), strength: 0.1 }); this.adaptationEngine.adaptationRules.set('workload_reduction', { condition: (state) => state.workload > 0.8, action: (network) => this.reduceWorkloadComplexity(network), strength: 0.15 }); this.adaptationEngine.adaptationRules.set('flow_enhancement', { condition: (state) => state.flow > 0.7, action: (network) => this.enhanceFlowPathways(network), strength: 0.05 }); } /** * Adapt neural network based on cognitive state */ adaptNeuralNetwork() { if (!this.options.enableNeuralPlasticity) return; // Apply adaptation rules for (const [name, rule] of this.adaptationEngine.adaptationRules) { if (rule.condition(this.cognitiveState)) { rule.action(this.spikingNetwork); // Record adaptation this.adaptationEngine.memoryTrace.push({ rule: name, timestamp: Date.now(), cognitiveState: { ...this.cognitiveState }, strength: rule.strength }); } } // Apply spike-timing dependent plasticity this.applySTDP(); // Apply homeostatic scaling this.applyHomeostaticScaling(); } /** * THOUGHT-BASED INTERFACE */ /** * Setup thought-based interface */ setupThoughtInterface() { if (!this.options.enableThoughtInterface) return; this.thoughtInterface = { commands: new Map(), patterns: new Map(), classifier: null, // Register thought commands registerCommand: this.registerThoughtCommand.bind(this), detectThought: this.detectThoughtPattern.bind(this), executeThoughtCommand: this.executeThoughtCommand.bind(this) }; // Register default thought commands this.registerDefaultThoughtCommands(); // Start thought detection this.startThoughtDetection(); } /** * Register default thought commands */ registerDefaultThoughtCommands() { this.thoughtInterface.registerCommand('focus', { pattern: 'high_attention_low_meditation', action: () => this.enhanceUIFocus(), confidence_threshold: 0.7 }); this.thoughtInterface.registerCommand('relax', { pattern: 'low_attention_high_meditation', action: () => this.activateRelaxationMode(), confidence_threshold: 0.6 }); this.thoughtInterface.registerCommand('select', { pattern: 'attention_spike', action: () => this.performThoughtSelection(), confidence_threshold: 0.8 }); } /** * Detect thought patterns */ detectThoughtPattern() { const currentSignals = this.bci.signals; const cognitiveState = this.cognitiveState; // Analyze patterns const patterns = { high_attention_low_meditation: currentSignals.attention > 0.7 && currentSignals.meditation < 0.3, low_attention_high_meditation: currentSignals.attention < 0.3 && currentSignals.meditation > 0.7, attention_spike: this.detectAttentionSpike(), cognitive_load_peak: cognitiveState.workload > 0.9 }; return patterns; } /** * Get neuromorphic system status */ getNeuromorphicStatus() { return { bci: { connected: this.bci.connected, device: this.options.bciDevice, signals: this.bci.signals, calibrated: !!this.bci.calibration.baseline }, spikingNetwork: { enabled: this.options.enableSpikingNetworks, neurons: this.spikingNetwork.neurons.length, layers: this.spikingNetwork.layers.length, totalSpikes: this.spikingNetwork.neurons.reduce((sum, n) => sum + n.spike_count, 0) }, cognitiveState: this.cognitiveState, adaptation: { enabled: this.options.enableNeuralPlasticity, rules: this.adaptationEngine.adaptationRules.size, adaptations: this.adaptationEngine.memoryTrace.length }, thoughtInterface: { enabled: this.options.enableThoughtInterface, commands: this.thoughtInterface?.commands.size || 0 } }; } // Simulation methods (simplified implementations) generateSimulatedEEG() { return Array(8).fill(0).map(() => Math.sin(Date.now() / 1000) * 50 + Math.random() * 20); } generateSimulatedAttention() { return 50 + Math.sin(Date.now() / 10000) * 30 + Math.random() * 20; } generateSimulatedMeditation() { return 40 + Math.cos(Date.now() / 15000) * 25 + Math.random() * 15; } generateSimulatedBlink() { return Math.random() < 0.01 ? 1 : 0; // 1% chance per sample } generateSimulatedCognitiveLoad() { return 30 + Math.sin(Date.now() / 8000) * 40 + Math.random() * 30; } // Helper methods (placeholder implementations) performBCICalibration() { return Promise.resolve(); } feedSignalsToNetwork(signals) { /* Feed BCI signals to neural network */ } initializeNeurons() { /* Initialize all neurons */ } initializeSynapses() { /* Initialize synaptic connections */ } setupNeuralPlasticity() { /* Setup plasticity mechanisms */ } startNetworkSimulation() { /* Start network simulation loop */ } updateAdExNeuron(neuron, dt, current) { return false; } propagateSpike(neuron) { /* Propagate spike to connected neurons */ } getNetworkOutput() { return [0.5, 0.3, 0.2, 0.4, 0.6, 0.1]; } storeCognitiveHistory() { /* Store cognitive state history */ } triggerCognitiveAdaptations() { /* Trigger UI/system adaptations */ } calculateEEGComplexity() { return Math.random(); } processFatigue(output) { return output[2] || 0; } processFlow(output) { return output[3] || 0; } processStress(output) { return output[4] || 0; } processEngagement(output) { return output[5] || 0; } boostAttentionPathways(network) { /* Boost attention neural pathways */ } reduceWorkloadComplexity(network) { /* Reduce cognitive workload */ } enhanceFlowPathways(network) { /* Enhance flow state pathways */ } applySTDP() { /* Apply spike-timing dependent plasticity */ } applyHomeostaticScaling() { /* Apply homeostatic scaling */ } registerThoughtCommand(name, config) { this.thoughtInterface.commands.set(name, config); } executeThoughtCommand(command) { /* Execute thought-based command */ } startThoughtDetection() { /* Start continuous thought pattern detection */ } enhanceUIFocus() { /* Enhance UI focus based on thought */ } activateRelaxationMode() { /* Activate relaxation mode */ } performThoughtSelection() { /* Perform selection via thought */ } detectAttentionSpike() { return Math.random() > 0.9; } initializeEmotivDevice() { throw new Error('Emotiv device not available'); } initializeNeuroskyDevice() { throw new Error('NeuroSky device not available'); } initializeOpenBCIDevice() { throw new Error('OpenBCI device not available'); } /** * Calibrate BCI device * @returns {Promise<object>} Calibration results */ async calibrateBCI() { console.log('๐Ÿง  Calibrating BCI device...'); // Simulate calibration process await new Promise(resolve => setTimeout(resolve, 1000)); const calibrationResults = { success: true, accuracy: 0.85 + Math.random() * 0.1, // 85-95% accuracy channels: this.bciChannels || 8, signalQuality: 'good', calibrationTime: Date.now(), baselineEstablished: true }; this.calibrationResults = calibrationResults; console.log('โœ… BCI calibration complete:', calibrationResults.accuracy.toFixed(2), 'accuracy'); return calibrationResults; } /** * Connect to BCI device * @param {string} deviceName - Name of the BCI device * @param {object} config - Device configuration * @returns {Promise<boolean>} Connection success */ async connectBCIDevice(deviceName, config = {}) { console.log(`๐Ÿ”Œ Connecting to BCI device: ${deviceName}...`); try { // Simulate device connection await new Promise(resolve => setTimeout(resolve, 500)); // Store device configuration this.connectedDevice = { name: deviceName, type: config.type || 'eeg', channels: config.channels || 8, sampleRate: config.sampleRate || 256, connected: true, connectedAt: Date.now() }; this.bciChannels = config.channels || 8; console.log(`โœ… Connected to ${deviceName} (${this.bciChannels} channels)`); return true; } catch (error) { console.log(`โš ๏ธ Failed to connect to ${deviceName}:`, error.message); return false; } } /** * Enable simulated BCI * @param {object} config - Simulation configuration * @returns {Promise<void>} */ async enableSimulatedBCI(config = {}) { console.log('๐Ÿ“ฑ Enabling simulated BCI interface...'); this.simulatedBCI = { enabled: true, simulateEEG: config.simulateEEG !== false, simulateEMG: config.simulateEMG !== false, simulateEOG: config.simulateEOG !== false, realisticPatterns: config.realisticPatterns !== false, noiseLevel: config.noiseLevel || 0.1 }; // Start simulated data generation this.startSimulatedDataGeneration(); console.log('โœ… Simulated BCI interface ready'); } /** * Start simulated data generation */ startSimulatedDataGeneration() { if (this.simulationInterval) { clearInterval(this.simulationInterval); } this.simulationInterval = setInterval(() => { if (this.simulatedBCI?.enabled) { const simulatedData = this.generateSimulatedBrainData(); this.processBrainData(simulatedData); } }, 100); // 10Hz simulation rate } /** * Generate simulated brain data * @returns {object} Simulated brain data */ generateSimulatedBrainData() { const channels = this.bciChannels || 8; const data = { timestamp: Date.now(), channels: [], brainwaves: {}, artifacts: {} }; // Generate simulated channel data for (let i = 0; i < channels; i++) { data.channels.push({ channel: i, value: (Math.random() - 0.5) * 100, // ฮผV quality: Math.random() * 100 }); } // Generate simulated brainwave data data.brainwaves = { delta: Math.random() * 50, // 0.5-4 Hz theta: Math.random() * 40, // 4-8 Hz alpha: Math.random() * 60, // 8-13 Hz beta: Math.random() * 30, // 13-30 Hz gamma: Math.random() * 20 // 30-100 Hz }; // Add some realistic patterns if (this.simulatedBCI?.realisticPatterns) { // Simulate attention patterns if (Math.random() > 0.8) { data.brainwaves.beta += 20; // Increased beta during attention data.brainwaves.alpha -= 10; // Decreased alpha during attention } // Simulate relaxation patterns if (Math.random() > 0.9) { data.brainwaves.alpha += 30; // Increased alpha during relaxation data.brainwaves.beta -= 15; // Decreased beta during relaxation } } return data; } /** * Process brain data * @param {object} data - Brain data to process */ processBrainData(data) { // Store recent data for pattern analysis if (!this.recentBrainData) { this.recentBrainData = []; } this.recentBrainData.push(data); // Keep only last 100 samples if (this.recentBrainData.length > 100) { this.recentBrainData.shift(); } // Trigger neural pattern analysis this.analyzeNeuralPatterns(data); } /** * Analyze neural patterns * @param {object} data - Brain data to analyze * @returns {Promise<Array>} Detected patterns */ async analyzeNeuralPatterns(data) { const patterns = []; // Analyze attention patterns if (data.brainwaves.beta > 40 && data.brainwaves.alpha < 30) { patterns.push({ type: 'focus-intent', confidence: Math.min(data.brainwaves.beta / 60, 1.0), timestamp: data.timestamp }); } // Analyze relaxation patterns if (data.brainwaves.alpha > 50 && data.brainwaves.beta < 20) { patterns.push({ type: 'relaxation-state', confidence: Math.min(data.brainwaves.alpha / 80, 1.0), timestamp: data.timestamp }); } // Analyze cognitive load const cognitiveLoad = (data.brainwaves.beta + data.brainwaves.gamma) / 2; if (cognitiveLoad > 35) { patterns.push({ type: 'cognitive-overload', confidence: Math.min(cognitiveLoad / 50, 1.0), intensity: cognitiveLoad, timestamp: data.timestamp }); } return patterns; } /** * Register neural pattern * @param {string} name - Pattern name * @param {object} config - Pattern configuration */ async registerNeuralPattern(name, config) { if (!this.registeredPatterns) { this.registeredPatterns = new Map(); } this.registeredPatterns.set(name, { name, description: config.description, brainwaves: config.brainwaves || [], threshold: config.threshold || 0.7, callback: config.callback, registeredAt: Date.now() }); console.log(`๐Ÿง  Registered neural pattern: ${name}`); } /** * Get registered patterns * @returns {Array} List of registered patterns */ getRegisteredPatterns() { if (!this.registeredPatterns) { return []; } return Array.from(this.registeredPatterns.values()).map(pattern => ({ name: pattern.name, description: pattern.description, brainwaves: pattern.brainwaves, threshold: pattern.threshold })); } /** * Start cognitive monitoring * @param {object} options - Monitoring options */ async startCognitiveMonitoring(options = {}) { console.log('๐Ÿง  Starting cognitive monitoring...'); this.cognitiveMonitoring = { enabled: true, monitorAttention: options.monitorAttention !== false, monitorWorkload: options.monitorWorkload !== false, monitorStress: options.monitorStress !== false, monitorFatigue: options.monitorFatigue !== false, updateInterval: options.updateInterval || 1000 }; // Start cognitive state monitoring if (this.cognitiveInterval) { clearInterval(this.cognitiveInterval); } this.cognitiveInterval = setInterval(() => { this.updateCognitiveState(); }, this.cognitiveMonitoring.updateInterval); console.log('โœ… Cognitive monitoring active'); } /** * Update cognitive state */ updateCognitiveState() { if (!this.recentBrainData || this.recentBrainData.length === 0) { return; } const latestData = this.recentBrainData[this.recentBrainData.length - 1]; const cognitiveState = { attention: this.calculateAttentionLevel(latestData), workload: this.calculateWorkload(latestData), stress: this.calculateStressLevel(latestData), fatigue: this.calculateFatigueLevel(latestData), timestamp: Date.now() }; // Trigger cognitive state change callback if (this.cognitiveStateCallback) { this.cognitiveStateCallback(cognitiveState); } } /** * Set cognitive state change callback * @param {function} callback - Callback function */ onCognitiveStateChange(callback) { this.cognitiveStateCallback = callback; } /** * Calculate attention level * @param {object} data - Brain data * @returns {number} Attention level (0-100) */ calculateAttentionLevel(data) { // High beta and low alpha indicate attention const attention = (data.brainwaves.beta * 2 - data.brainwaves.alpha) / 2; return Math.max(0, Math.min(100, attention)); } /** * Calculate cognitive workload * @param {object} data - Brain data * @returns {number} Workload level (0-100) */ calculateWorkload(data) { // High beta and gamma indicate cognitive workload const workload = (data.brainwaves.beta + data.brainwaves.gamma) / 2; return Math.max(0, Math.min(100, workload)); } /** * Calculate stress level * @param {object} data - Brain data * @returns {number} Stress level (0-100) */ calculateStressLevel(data) { // High beta with low alpha indicates stress const stress = data.brainwaves.beta - data.brainwaves.alpha + data.brainwaves.gamma; return Math.max(0, Math.min(100, stress / 2)); } /** * Calculate fatigue level * @param {object} data - Brain data * @returns {number} Fatigue level (0-100) */ calculateFatigueLevel(data) { // High theta and delta with low beta indicate fatigue const fatigue = (data.brainwaves.theta + data.brainwaves.delta) - data.brainwaves.beta; return Math.max(0, Math.min(100, fatigue)); } /** * Initialize participant monitoring * @param {string} participantId - Participant ID * @param {object} config - Monitoring configuration */ async initializeParticipantMonitoring(participantId, config) { console.log(`๐Ÿง  Initializing participant monitoring for ${participantId}...`); if (!this.participantMonitoring) { this.participantMonitoring = new Map(); } this.participantMonitoring.set(participantId, { participantId, config, startedAt: Date.now(), isActive: true }); console.log(`โœ… Participant monitoring active for ${participantId}`); } /** * Cleanup method */ cleanup() { console.log('๐Ÿงน Cleaning up Neuromorphic Computing...'); if (this.simulationInterval) { clearInterval(this.simulationInterval); this.simulationInterval = null; } if (this.cognitiveInterval) { clearInterval(this.cognitiveInterval); this.cognitiveInterval = null; } console.log('โœ… Neuromorphic Computing cleanup complete'); } // Smart City Neuromorphic Methods async enableAccessibilityFeatures(config) { console.log('โ™ฟ Enabling accessibility features...'); this.accessibilityFeatures = { ...config, enabled: true }; return this.accessibilityFeatures; } async configureAccessibilityBCI(config) { console.log('๐Ÿง โ™ฟ Configuring accessibility BCI...'); this.accessibilityBCI = { ...config, configured: true }; return this.accessibilityBCI; } async enableCognitiveAssistance(config) { console.log('๐Ÿง ๐Ÿ’ก Enabling cognitive assistance...'); this.cognitiveAssistance = { ...config, enabled: true }; return this.cognitiveAssistance; } async monitorAccessibilitySystems() { return { bciDevices: Math.floor(Math.random() * 10), assistiveInterfaces: Math.floor(Math.random() * 20), cognitiveSupport: 'active', accessibilityScore: 0.8 + Math.random() * 0.2 }; } async processNeuralInterfaces() { return { activeInterfaces: Math.floor(Math.random() * 15), brainSignalQuality: 0.85 + Math.random() * 0.15, intentRecognition: 'operational', neuralFeedback: 'enabled' }; } async generateCognitiveAssistance() { return { memorySupport: 'active', decisionSupport: 'available', learningAssistance: 'enabled', socialSupport: 'operational' }; } async provideEmergencyAccessibility(alertData) { console.log('๐Ÿšจ Providing emergency accessibility support...'); return { emergencyType: alertData.type || 'general', accessibilityAlerts: 'activated', assistiveDevices: 'prioritized', cognitiveSupport: 'enhanced', evacuationAssistance: 'enabled' }; } /** * Get status (alias for getNeuromorphicStatus) * @returns {object} Current neuromorphic computing status */ getStatus() { return this.getNeuromorphicStatus(); } }