UNPKG

remcode

Version:

Turn your AI assistant into a codebase expert. Intelligent code analysis, semantic search, and software engineering guidance through MCP integration.

53 lines (52 loc) 1.58 kB
/** * HuggingFace MCP Handler * * Handles HuggingFace-related MCP requests, allowing AI assistants * to generate embeddings for code vectorization. * * Fixed: Uses correct HuggingFace Inference API with working models */ import { Request, Response } from 'express'; export interface HuggingFaceMCPOptions { token: string; } export declare class HuggingFaceMCPHandler { private options; private baseUrl; private initialized; private workingModel; private healthCheckedModels; constructor(options: HuggingFaceMCPOptions); initialize(): Promise<void>; /** * Find a working embedding model from our hierarchy */ private findWorkingModel; /** * Check if a model is healthy and available */ private checkModelHealth; handleRequest(req: Request, res: Response): Promise<void>; handleToolRequest(req: Request, res: Response): Promise<void>; private getEmbeddings; /** * Get embedding from model using correct HuggingFace Inference API format * Uses the same patterns as the working EmbeddingManager */ private getEmbeddingFromModel; /** * Process embedding result from API (same logic as EmbeddingManager) */ private processEmbeddingResult; /** * Preprocess text for better embedding quality (same as EmbeddingManager) */ private preprocessText; /** * Average token embeddings to get a single vector */ private averageEmbeddings; private handleEmbedCode; private handleEmbedQuery; private handleListModels; }