redux
Version:
Predictable state container for JavaScript apps
589 lines (576 loc) • 28.5 kB
TypeScript
/**
* An *action* is a plain object that represents an intention to change the
* state. Actions are the only way to get data into the store. Any data,
* whether from UI events, network callbacks, or other sources such as
* WebSockets needs to eventually be dispatched as actions.
*
* Actions must have a `type` field that indicates the type of action being
* performed. Types can be defined as constants and imported from another
* module. These must be strings, as strings are serializable.
*
* Other than `type`, the structure of an action object is really up to you.
* If you're interested, check out Flux Standard Action for recommendations on
* how actions should be constructed.
*
* @template T the type of the action's `type` tag.
*/
type Action<T extends string = string> = {
type: T;
};
/**
* An Action type which accepts any other properties.
* This is mainly for the use of the `Reducer` type.
* This is not part of `Action` itself to prevent types that extend `Action` from
* having an index signature.
*/
interface UnknownAction extends Action {
[extraProps: string]: unknown;
}
/**
* An Action type which accepts any other properties.
* This is mainly for the use of the `Reducer` type.
* This is not part of `Action` itself to prevent types that extend `Action` from
* having an index signature.
* @deprecated use Action or UnknownAction instead
*/
interface AnyAction extends Action {
[extraProps: string]: any;
}
/**
* An *action creator* is, quite simply, a function that creates an action. Do
* not confuse the two terms—again, an action is a payload of information, and
* an action creator is a factory that creates an action.
*
* Calling an action creator only produces an action, but does not dispatch
* it. You need to call the store's `dispatch` function to actually cause the
* mutation. Sometimes we say *bound action creators* to mean functions that
* call an action creator and immediately dispatch its result to a specific
* store instance.
*
* If an action creator needs to read the current state, perform an API call,
* or cause a side effect, like a routing transition, it should return an
* async action instead of an action.
*
* @template A Returned action type.
*/
interface ActionCreator<A, P extends any[] = any[]> {
(...args: P): A;
}
/**
* Object whose values are action creator functions.
*/
interface ActionCreatorsMapObject<A = any, P extends any[] = any[]> {
[key: string]: ActionCreator<A, P>;
}
/**
* A *reducer* is a function that accepts
* an accumulation and a value and returns a new accumulation. They are used
* to reduce a collection of values down to a single value
*
* Reducers are not unique to Redux—they are a fundamental concept in
* functional programming. Even most non-functional languages, like
* JavaScript, have a built-in API for reducing. In JavaScript, it's
* `Array.prototype.reduce()`.
*
* In Redux, the accumulated value is the state object, and the values being
* accumulated are actions. Reducers calculate a new state given the previous
* state and an action. They must be *pure functions*—functions that return
* the exact same output for given inputs. They should also be free of
* side-effects. This is what enables exciting features like hot reloading and
* time travel.
*
* Reducers are the most important concept in Redux.
*
* *Do not put API calls into reducers.*
*
* @template S The type of state consumed and produced by this reducer.
* @template A The type of actions the reducer can potentially respond to.
* @template PreloadedState The type of state consumed by this reducer the first time it's called.
*/
type Reducer<S = any, A extends Action = UnknownAction, PreloadedState = S> = (state: S | PreloadedState | undefined, action: A) => S;
/**
* Object whose values correspond to different reducer functions.
*
* @template S The combined state of the reducers.
* @template A The type of actions the reducers can potentially respond to.
* @template PreloadedState The combined preloaded state of the reducers.
*/
type ReducersMapObject<S = any, A extends Action = UnknownAction, PreloadedState = S> = keyof PreloadedState extends keyof S ? {
[K in keyof S]: Reducer<S[K], A, K extends keyof PreloadedState ? PreloadedState[K] : never>;
} : never;
/**
* Infer a combined state shape from a `ReducersMapObject`.
*
* @template M Object map of reducers as provided to `combineReducers(map: M)`.
*/
type StateFromReducersMapObject<M> = M[keyof M] extends Reducer<any, any, any> | undefined ? {
[P in keyof M]: M[P] extends Reducer<infer S, any, any> ? S : never;
} : never;
/**
* Infer reducer union type from a `ReducersMapObject`.
*
* @template M Object map of reducers as provided to `combineReducers(map: M)`.
*/
type ReducerFromReducersMapObject<M> = M[keyof M] extends Reducer<any, any, any> | undefined ? M[keyof M] : never;
/**
* Infer action type from a reducer function.
*
* @template R Type of reducer.
*/
type ActionFromReducer<R> = R extends Reducer<any, infer A, any> ? A : never;
/**
* Infer action union type from a `ReducersMapObject`.
*
* @template M Object map of reducers as provided to `combineReducers(map: M)`.
*/
type ActionFromReducersMapObject<M> = ActionFromReducer<ReducerFromReducersMapObject<M>>;
/**
* Infer a combined preloaded state shape from a `ReducersMapObject`.
*
* @template M Object map of reducers as provided to `combineReducers(map: M)`.
*/
type PreloadedStateShapeFromReducersMapObject<M> = M[keyof M] extends Reducer<any, any, any> | undefined ? {
[P in keyof M]: M[P] extends (inputState: infer InputState, action: UnknownAction) => any ? InputState : never;
} : never;
/**
* A *dispatching function* (or simply *dispatch function*) is a function that
* accepts an action or an async action; it then may or may not dispatch one
* or more actions to the store.
*
* We must distinguish between dispatching functions in general and the base
* `dispatch` function provided by the store instance without any middleware.
*
* The base dispatch function *always* synchronously sends an action to the
* store's reducer, along with the previous state returned by the store, to
* calculate a new state. It expects actions to be plain objects ready to be
* consumed by the reducer.
*
* Middleware wraps the base dispatch function. It allows the dispatch
* function to handle async actions in addition to actions. Middleware may
* transform, delay, ignore, or otherwise interpret actions or async actions
* before passing them to the next middleware.
*
* @template A The type of things (actions or otherwise) which may be
* dispatched.
*/
interface Dispatch<A extends Action = UnknownAction> {
<T extends A>(action: T, ...extraArgs: any[]): T;
}
/**
* Function to remove listener added by `Store.subscribe()`.
*/
interface Unsubscribe {
(): void;
}
type ListenerCallback = () => void;
declare global {
interface SymbolConstructor {
readonly observable: symbol;
}
}
/**
* A minimal observable of state changes.
* For more information, see the observable proposal:
* https://github.com/tc39/proposal-observable
*/
type Observable<T> = {
/**
* The minimal observable subscription method.
* @param {Object} observer Any object that can be used as an observer.
* The observer object should have a `next` method.
* @returns {subscription} An object with an `unsubscribe` method that can
* be used to unsubscribe the observable from the store, and prevent further
* emission of values from the observable.
*/
subscribe: (observer: Observer<T>) => {
unsubscribe: Unsubscribe;
};
[Symbol.observable](): Observable<T>;
};
/**
* An Observer is used to receive data from an Observable, and is supplied as
* an argument to subscribe.
*/
type Observer<T> = {
next?(value: T): void;
};
/**
* A store is an object that holds the application's state tree.
* There should only be a single store in a Redux app, as the composition
* happens on the reducer level.
*
* @template S The type of state held by this store.
* @template A the type of actions which may be dispatched by this store.
* @template StateExt any extension to state from store enhancers
*/
interface Store<S = any, A extends Action = UnknownAction, StateExt extends unknown = unknown> {
/**
* Dispatches an action. It is the only way to trigger a state change.
*
* The `reducer` function, used to create the store, will be called with the
* current state tree and the given `action`. Its return value will be
* considered the **next** state of the tree, and the change listeners will
* be notified.
*
* The base implementation only supports plain object actions. If you want
* to dispatch a Promise, an Observable, a thunk, or something else, you
* need to wrap your store creating function into the corresponding
* middleware. For example, see the documentation for the `redux-thunk`
* package. Even the middleware will eventually dispatch plain object
* actions using this method.
*
* @param action A plain object representing “what changed”. It is a good
* idea to keep actions serializable so you can record and replay user
* sessions, or use the time travelling `redux-devtools`. An action must
* have a `type` property which may not be `undefined`. It is a good idea
* to use string constants for action types.
*
* @returns For convenience, the same action object you dispatched.
*
* Note that, if you use a custom middleware, it may wrap `dispatch()` to
* return something else (for example, a Promise you can await).
*/
dispatch: Dispatch<A>;
/**
* Reads the state tree managed by the store.
*
* @returns The current state tree of your application.
*/
getState(): S & StateExt;
/**
* Adds a change listener. It will be called any time an action is
* dispatched, and some part of the state tree may potentially have changed.
* You may then call `getState()` to read the current state tree inside the
* callback.
*
* You may call `dispatch()` from a change listener, with the following
* caveats:
*
* 1. The subscriptions are snapshotted just before every `dispatch()` call.
* If you subscribe or unsubscribe while the listeners are being invoked,
* this will not have any effect on the `dispatch()` that is currently in
* progress. However, the next `dispatch()` call, whether nested or not,
* will use a more recent snapshot of the subscription list.
*
* 2. The listener should not expect to see all states changes, as the state
* might have been updated multiple times during a nested `dispatch()` before
* the listener is called. It is, however, guaranteed that all subscribers
* registered before the `dispatch()` started will be called with the latest
* state by the time it exits.
*
* @param listener A callback to be invoked on every dispatch.
* @returns A function to remove this change listener.
*/
subscribe(listener: ListenerCallback): Unsubscribe;
/**
* Replaces the reducer currently used by the store to calculate the state.
*
* You might need this if your app implements code splitting and you want to
* load some of the reducers dynamically. You might also need this if you
* implement a hot reloading mechanism for Redux.
*
* @param nextReducer The reducer for the store to use instead.
*/
replaceReducer(nextReducer: Reducer<S, A>): void;
/**
* Interoperability point for observable/reactive libraries.
* @returns {observable} A minimal observable of state changes.
* For more information, see the observable proposal:
* https://github.com/tc39/proposal-observable
*/
[Symbol.observable](): Observable<S & StateExt>;
}
type UnknownIfNonSpecific<T> = {} extends T ? unknown : T;
/**
* A store creator is a function that creates a Redux store. Like with
* dispatching function, we must distinguish the base store creator,
* `createStore(reducer, preloadedState)` exported from the Redux package, from
* store creators that are returned from the store enhancers.
*
* @template S The type of state to be held by the store.
* @template A The type of actions which may be dispatched.
* @template PreloadedState The initial state that is passed into the reducer.
* @template Ext Store extension that is mixed in to the Store type.
* @template StateExt State extension that is mixed into the state type.
*/
interface StoreCreator {
<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}>(reducer: Reducer<S, A>, enhancer?: StoreEnhancer<Ext, StateExt>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}, PreloadedState = S>(reducer: Reducer<S, A, PreloadedState>, preloadedState?: PreloadedState | undefined, enhancer?: StoreEnhancer<Ext>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
}
/**
* A store enhancer is a higher-order function that composes a store creator
* to return a new, enhanced store creator. This is similar to middleware in
* that it allows you to alter the store interface in a composable way.
*
* Store enhancers are much the same concept as higher-order components in
* React, which are also occasionally called “component enhancers”.
*
* Because a store is not an instance, but rather a plain-object collection of
* functions, copies can be easily created and modified without mutating the
* original store. There is an example in `compose` documentation
* demonstrating that.
*
* Most likely you'll never write a store enhancer, but you may use the one
* provided by the developer tools. It is what makes time travel possible
* without the app being aware it is happening. Amusingly, the Redux
* middleware implementation is itself a store enhancer.
*
* @template Ext Store extension that is mixed into the Store type.
* @template StateExt State extension that is mixed into the state type.
*/
type StoreEnhancer<Ext extends {} = {}, StateExt extends {} = {}> = <NextExt extends {}, NextStateExt extends {}>(next: StoreEnhancerStoreCreator<NextExt, NextStateExt>) => StoreEnhancerStoreCreator<NextExt & Ext, NextStateExt & StateExt>;
type StoreEnhancerStoreCreator<Ext extends {} = {}, StateExt extends {} = {}> = <S, A extends Action, PreloadedState>(reducer: Reducer<S, A, PreloadedState>, preloadedState?: PreloadedState | undefined) => Store<S, A, StateExt> & Ext;
/**
* @deprecated
*
* **We recommend using the `configureStore` method
* of the `@reduxjs/toolkit` package**, which replaces `createStore`.
*
* Redux Toolkit is our recommended approach for writing Redux logic today,
* including store setup, reducers, data fetching, and more.
*
* **For more details, please read this Redux docs page:**
* **https://redux.js.org/introduction/why-rtk-is-redux-today**
*
* `configureStore` from Redux Toolkit is an improved version of `createStore` that
* simplifies setup and helps avoid common bugs.
*
* You should not be using the `redux` core package by itself today, except for learning purposes.
* The `createStore` method from the core `redux` package will not be removed, but we encourage
* all users to migrate to using Redux Toolkit for all Redux code.
*
* If you want to use `createStore` without this visual deprecation warning, use
* the `legacy_createStore` import instead:
*
* `import { legacy_createStore as createStore} from 'redux'`
*
*/
declare function createStore<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}>(reducer: Reducer<S, A>, enhancer?: StoreEnhancer<Ext, StateExt>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
/**
* @deprecated
*
* **We recommend using the `configureStore` method
* of the `@reduxjs/toolkit` package**, which replaces `createStore`.
*
* Redux Toolkit is our recommended approach for writing Redux logic today,
* including store setup, reducers, data fetching, and more.
*
* **For more details, please read this Redux docs page:**
* **https://redux.js.org/introduction/why-rtk-is-redux-today**
*
* `configureStore` from Redux Toolkit is an improved version of `createStore` that
* simplifies setup and helps avoid common bugs.
*
* You should not be using the `redux` core package by itself today, except for learning purposes.
* The `createStore` method from the core `redux` package will not be removed, but we encourage
* all users to migrate to using Redux Toolkit for all Redux code.
*
* If you want to use `createStore` without this visual deprecation warning, use
* the `legacy_createStore` import instead:
*
* `import { legacy_createStore as createStore} from 'redux'`
*
*/
declare function createStore<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}, PreloadedState = S>(reducer: Reducer<S, A, PreloadedState>, preloadedState?: PreloadedState | undefined, enhancer?: StoreEnhancer<Ext, StateExt>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
/**
* Creates a Redux store that holds the state tree.
*
* **We recommend using `configureStore` from the
* `@reduxjs/toolkit` package**, which replaces `createStore`:
* **https://redux.js.org/introduction/why-rtk-is-redux-today**
*
* The only way to change the data in the store is to call `dispatch()` on it.
*
* There should only be a single store in your app. To specify how different
* parts of the state tree respond to actions, you may combine several reducers
* into a single reducer function by using `combineReducers`.
*
* @param {Function} reducer A function that returns the next state tree, given
* the current state tree and the action to handle.
*
* @param {any} [preloadedState] The initial state. You may optionally specify it
* to hydrate the state from the server in universal apps, or to restore a
* previously serialized user session.
* If you use `combineReducers` to produce the root reducer function, this must be
* an object with the same shape as `combineReducers` keys.
*
* @param {Function} [enhancer] The store enhancer. You may optionally specify it
* to enhance the store with third-party capabilities such as middleware,
* time travel, persistence, etc. The only store enhancer that ships with Redux
* is `applyMiddleware()`.
*
* @returns {Store} A Redux store that lets you read the state, dispatch actions
* and subscribe to changes.
*/
declare function legacy_createStore<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}>(reducer: Reducer<S, A>, enhancer?: StoreEnhancer<Ext, StateExt>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
/**
* Creates a Redux store that holds the state tree.
*
* **We recommend using `configureStore` from the
* `@reduxjs/toolkit` package**, which replaces `createStore`:
* **https://redux.js.org/introduction/why-rtk-is-redux-today**
*
* The only way to change the data in the store is to call `dispatch()` on it.
*
* There should only be a single store in your app. To specify how different
* parts of the state tree respond to actions, you may combine several reducers
* into a single reducer function by using `combineReducers`.
*
* @param {Function} reducer A function that returns the next state tree, given
* the current state tree and the action to handle.
*
* @param {any} [preloadedState] The initial state. You may optionally specify it
* to hydrate the state from the server in universal apps, or to restore a
* previously serialized user session.
* If you use `combineReducers` to produce the root reducer function, this must be
* an object with the same shape as `combineReducers` keys.
*
* @param {Function} [enhancer] The store enhancer. You may optionally specify it
* to enhance the store with third-party capabilities such as middleware,
* time travel, persistence, etc. The only store enhancer that ships with Redux
* is `applyMiddleware()`.
*
* @returns {Store} A Redux store that lets you read the state, dispatch actions
* and subscribe to changes.
*/
declare function legacy_createStore<S, A extends Action, Ext extends {} = {}, StateExt extends {} = {}, PreloadedState = S>(reducer: Reducer<S, A, PreloadedState>, preloadedState?: PreloadedState | undefined, enhancer?: StoreEnhancer<Ext, StateExt>): Store<S, A, UnknownIfNonSpecific<StateExt>> & Ext;
/**
* Turns an object whose values are different reducer functions, into a single
* reducer function. It will call every child reducer, and gather their results
* into a single state object, whose keys correspond to the keys of the passed
* reducer functions.
*
* @template S Combined state object type.
*
* @param reducers An object whose values correspond to different reducer
* functions that need to be combined into one. One handy way to obtain it
* is to use `import * as reducers` syntax. The reducers may never
* return undefined for any action. Instead, they should return their
* initial state if the state passed to them was undefined, and the current
* state for any unrecognized action.
*
* @returns A reducer function that invokes every reducer inside the passed
* object, and builds a state object with the same shape.
*/
declare function combineReducers<M>(reducers: M): M[keyof M] extends Reducer<any, any, any> | undefined ? Reducer<StateFromReducersMapObject<M>, ActionFromReducersMapObject<M>, Partial<PreloadedStateShapeFromReducersMapObject<M>>> : never;
/**
* Turns an object whose values are action creators, into an object with the
* same keys, but with every function wrapped into a `dispatch` call so they
* may be invoked directly. This is just a convenience method, as you can call
* `store.dispatch(MyActionCreators.doSomething())` yourself just fine.
*
* For convenience, you can also pass an action creator as the first argument,
* and get a dispatch wrapped function in return.
*
* @param actionCreators An object whose values are action
* creator functions. One handy way to obtain it is to use `import * as`
* syntax. You may also pass a single function.
*
* @param dispatch The `dispatch` function available on your Redux
* store.
*
* @returns The object mimicking the original object, but with
* every action creator wrapped into the `dispatch` call. If you passed a
* function as `actionCreators`, the return value will also be a single
* function.
*/
declare function bindActionCreators<A, C extends ActionCreator<A>>(actionCreator: C, dispatch: Dispatch): C;
declare function bindActionCreators<A extends ActionCreator<any>, B extends ActionCreator<any>>(actionCreator: A, dispatch: Dispatch): B;
declare function bindActionCreators<A, M extends ActionCreatorsMapObject<A>>(actionCreators: M, dispatch: Dispatch): M;
declare function bindActionCreators<M extends ActionCreatorsMapObject, N extends ActionCreatorsMapObject>(actionCreators: M, dispatch: Dispatch): N;
interface MiddlewareAPI<D extends Dispatch = Dispatch, S = any> {
dispatch: D;
getState(): S;
}
/**
* A middleware is a higher-order function that composes a dispatch function
* to return a new dispatch function. It often turns async actions into
* actions.
*
* Middleware is composable using function composition. It is useful for
* logging actions, performing side effects like routing, or turning an
* asynchronous API call into a series of synchronous actions.
*
* @template DispatchExt Extra Dispatch signature added by this middleware.
* @template S The type of the state supported by this middleware.
* @template D The type of Dispatch of the store where this middleware is
* installed.
*/
interface Middleware<_DispatchExt = {}, // TODO: see if this can be used in type definition somehow (can't be removed, as is used to get final dispatch type)
S = any, D extends Dispatch = Dispatch> {
(api: MiddlewareAPI<D, S>): (next: (action: unknown) => unknown) => (action: unknown) => unknown;
}
/**
* Creates a store enhancer that applies middleware to the dispatch method
* of the Redux store. This is handy for a variety of tasks, such as expressing
* asynchronous actions in a concise manner, or logging every action payload.
*
* See `redux-thunk` package as an example of the Redux middleware.
*
* Because middleware is potentially asynchronous, this should be the first
* store enhancer in the composition chain.
*
* Note that each middleware will be given the `dispatch` and `getState` functions
* as named arguments.
*
* @param middlewares The middleware chain to be applied.
* @returns A store enhancer applying the middleware.
*
* @template Ext Dispatch signature added by a middleware.
* @template S The type of the state supported by a middleware.
*/
declare function applyMiddleware(): StoreEnhancer;
declare function applyMiddleware<Ext1, S>(middleware1: Middleware<Ext1, S, any>): StoreEnhancer<{
dispatch: Ext1;
}>;
declare function applyMiddleware<Ext1, Ext2, S>(middleware1: Middleware<Ext1, S, any>, middleware2: Middleware<Ext2, S, any>): StoreEnhancer<{
dispatch: Ext1 & Ext2;
}>;
declare function applyMiddleware<Ext1, Ext2, Ext3, S>(middleware1: Middleware<Ext1, S, any>, middleware2: Middleware<Ext2, S, any>, middleware3: Middleware<Ext3, S, any>): StoreEnhancer<{
dispatch: Ext1 & Ext2 & Ext3;
}>;
declare function applyMiddleware<Ext1, Ext2, Ext3, Ext4, S>(middleware1: Middleware<Ext1, S, any>, middleware2: Middleware<Ext2, S, any>, middleware3: Middleware<Ext3, S, any>, middleware4: Middleware<Ext4, S, any>): StoreEnhancer<{
dispatch: Ext1 & Ext2 & Ext3 & Ext4;
}>;
declare function applyMiddleware<Ext1, Ext2, Ext3, Ext4, Ext5, S>(middleware1: Middleware<Ext1, S, any>, middleware2: Middleware<Ext2, S, any>, middleware3: Middleware<Ext3, S, any>, middleware4: Middleware<Ext4, S, any>, middleware5: Middleware<Ext5, S, any>): StoreEnhancer<{
dispatch: Ext1 & Ext2 & Ext3 & Ext4 & Ext5;
}>;
declare function applyMiddleware<Ext, S = any>(...middlewares: Middleware<any, S, any>[]): StoreEnhancer<{
dispatch: Ext;
}>;
type Func<T extends any[], R> = (...a: T) => R;
/**
* Composes single-argument functions from right to left. The rightmost
* function can take multiple arguments as it provides the signature for the
* resulting composite function.
*
* @param funcs The functions to compose.
* @returns A function obtained by composing the argument functions from right
* to left. For example, `compose(f, g, h)` is identical to doing
* `(...args) => f(g(h(...args)))`.
*/
declare function compose(): <R>(a: R) => R;
declare function compose<F extends Function>(f: F): F;
declare function compose<A, T extends any[], R>(f1: (a: A) => R, f2: Func<T, A>): Func<T, R>;
declare function compose<A, B, T extends any[], R>(f1: (b: B) => R, f2: (a: A) => B, f3: Func<T, A>): Func<T, R>;
declare function compose<A, B, C, T extends any[], R>(f1: (c: C) => R, f2: (b: B) => C, f3: (a: A) => B, f4: Func<T, A>): Func<T, R>;
declare function compose<R>(f1: (a: any) => R, ...funcs: Function[]): (...args: any[]) => R;
declare function compose<R>(...funcs: Function[]): (...args: any[]) => R;
declare function isAction(action: unknown): action is Action<string>;
/**
* @param obj The object to inspect.
* @returns True if the argument appears to be a plain object.
*/
declare function isPlainObject(obj: any): obj is object;
/**
* These are private action types reserved by Redux.
* For any unknown actions, you must return the current state.
* If the current state is undefined, you must return the initial state.
* Do not reference these action types directly in your code.
*/
declare const ActionTypes: {
INIT: string;
REPLACE: string;
PROBE_UNKNOWN_ACTION: () => string;
};
export { Action, ActionCreator, ActionCreatorsMapObject, ActionFromReducer, ActionFromReducersMapObject, AnyAction, Dispatch, Middleware, MiddlewareAPI, Observable, Observer, PreloadedStateShapeFromReducersMapObject, Reducer, ReducerFromReducersMapObject, ReducersMapObject, StateFromReducersMapObject, Store, StoreCreator, StoreEnhancer, StoreEnhancerStoreCreator, UnknownAction, Unsubscribe, ActionTypes as __DO_NOT_USE__ActionTypes, applyMiddleware, bindActionCreators, combineReducers, compose, createStore, isAction, isPlainObject, legacy_createStore };