recharts
Version:
React charts
576 lines (558 loc) • 20.5 kB
JavaScript
function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; }
function _objectSpread(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; }
function _defineProperty(e, r, t) { return (r = _toPropertyKey(r)) in e ? Object.defineProperty(e, r, { value: t, enumerable: !0, configurable: !0, writable: !0 }) : e[r] = t, e; }
function _toPropertyKey(t) { var i = _toPrimitive(t, "string"); return "symbol" == typeof i ? i : i + ""; }
function _toPrimitive(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); }
import sortBy from 'es-toolkit/compat/sortBy';
import get from 'es-toolkit/compat/get';
import { stack as shapeStack, stackOffsetExpand, stackOffsetNone, stackOffsetSilhouette, stackOffsetWiggle, stackOrderNone } from 'victory-vendor/d3-shape';
import { findEntryInArray, isNan, isNullish, isNumber, isNumOrStr, mathSign } from './DataUtils';
import { inRangeOfSector, polarToCartesian } from './PolarUtils';
export function getValueByDataKey(obj, dataKey, defaultValue) {
if (isNullish(obj) || isNullish(dataKey)) {
return defaultValue;
}
if (isNumOrStr(dataKey)) {
return get(obj, dataKey, defaultValue);
}
if (typeof dataKey === 'function') {
return dataKey(obj);
}
return defaultValue;
}
export var calculateActiveTickIndex = (coordinate, ticks, unsortedTicks, axisType, range) => {
var _ticks$length;
var index = -1;
var len = (_ticks$length = ticks === null || ticks === void 0 ? void 0 : ticks.length) !== null && _ticks$length !== void 0 ? _ticks$length : 0;
// if there are 1 or fewer ticks or if there is no coordinate then the active tick is at index 0
if (len <= 1 || coordinate == null) {
return 0;
}
if (axisType === 'angleAxis' && range != null && Math.abs(Math.abs(range[1] - range[0]) - 360) <= 1e-6) {
// ticks are distributed in a circle
for (var i = 0; i < len; i++) {
var before = i > 0 ? unsortedTicks[i - 1].coordinate : unsortedTicks[len - 1].coordinate;
var cur = unsortedTicks[i].coordinate;
var after = i >= len - 1 ? unsortedTicks[0].coordinate : unsortedTicks[i + 1].coordinate;
var sameDirectionCoord = void 0;
if (mathSign(cur - before) !== mathSign(after - cur)) {
var diffInterval = [];
if (mathSign(after - cur) === mathSign(range[1] - range[0])) {
sameDirectionCoord = after;
var curInRange = cur + range[1] - range[0];
diffInterval[0] = Math.min(curInRange, (curInRange + before) / 2);
diffInterval[1] = Math.max(curInRange, (curInRange + before) / 2);
} else {
sameDirectionCoord = before;
var afterInRange = after + range[1] - range[0];
diffInterval[0] = Math.min(cur, (afterInRange + cur) / 2);
diffInterval[1] = Math.max(cur, (afterInRange + cur) / 2);
}
var sameInterval = [Math.min(cur, (sameDirectionCoord + cur) / 2), Math.max(cur, (sameDirectionCoord + cur) / 2)];
if (coordinate > sameInterval[0] && coordinate <= sameInterval[1] || coordinate >= diffInterval[0] && coordinate <= diffInterval[1]) {
({
index
} = unsortedTicks[i]);
break;
}
} else {
var minValue = Math.min(before, after);
var maxValue = Math.max(before, after);
if (coordinate > (minValue + cur) / 2 && coordinate <= (maxValue + cur) / 2) {
({
index
} = unsortedTicks[i]);
break;
}
}
}
} else if (ticks) {
// ticks are distributed in a single direction
for (var _i = 0; _i < len; _i++) {
if (_i === 0 && coordinate <= (ticks[_i].coordinate + ticks[_i + 1].coordinate) / 2 || _i > 0 && _i < len - 1 && coordinate > (ticks[_i].coordinate + ticks[_i - 1].coordinate) / 2 && coordinate <= (ticks[_i].coordinate + ticks[_i + 1].coordinate) / 2 || _i === len - 1 && coordinate > (ticks[_i].coordinate + ticks[_i - 1].coordinate) / 2) {
({
index
} = ticks[_i]);
break;
}
}
}
return index;
};
export var appendOffsetOfLegend = (offset, legendSettings, legendSize) => {
if (legendSettings && legendSize) {
var {
width: boxWidth,
height: boxHeight
} = legendSize;
var {
align,
verticalAlign,
layout
} = legendSettings;
if ((layout === 'vertical' || layout === 'horizontal' && verticalAlign === 'middle') && align !== 'center' && isNumber(offset[align])) {
return _objectSpread(_objectSpread({}, offset), {}, {
[align]: offset[align] + (boxWidth || 0)
});
}
if ((layout === 'horizontal' || layout === 'vertical' && align === 'center') && verticalAlign !== 'middle' && isNumber(offset[verticalAlign])) {
return _objectSpread(_objectSpread({}, offset), {}, {
[verticalAlign]: offset[verticalAlign] + (boxHeight || 0)
});
}
}
return offset;
};
export var isCategoricalAxis = (layout, axisType) => layout === 'horizontal' && axisType === 'xAxis' || layout === 'vertical' && axisType === 'yAxis' || layout === 'centric' && axisType === 'angleAxis' || layout === 'radial' && axisType === 'radiusAxis';
/**
* Calculate the Coordinates of grid
* @param {Array} ticks The ticks in axis
* @param {Number} minValue The minimum value of axis
* @param {Number} maxValue The maximum value of axis
* @param {boolean} syncWithTicks Synchronize grid lines with ticks or not
* @return {Array} Coordinates
*/
export var getCoordinatesOfGrid = (ticks, minValue, maxValue, syncWithTicks) => {
if (syncWithTicks) {
return ticks.map(entry => entry.coordinate);
}
var hasMin, hasMax;
var values = ticks.map(entry => {
if (entry.coordinate === minValue) {
hasMin = true;
}
if (entry.coordinate === maxValue) {
hasMax = true;
}
return entry.coordinate;
});
if (!hasMin) {
values.push(minValue);
}
if (!hasMax) {
values.push(maxValue);
}
return values;
};
/**
* A subset of d3-scale that Recharts is using
*/
/**
* Get the ticks of an axis
* @param {Object} axis The configuration of an axis
* @param {Boolean} isGrid Whether or not are the ticks in grid
* @param {Boolean} isAll Return the ticks of all the points or not
* @return {Array} Ticks
*/
export var getTicksOfAxis = (axis, isGrid, isAll) => {
if (!axis) {
return null;
}
var {
duplicateDomain,
type,
range,
scale,
realScaleType,
isCategorical,
categoricalDomain,
tickCount,
ticks,
niceTicks,
axisType
} = axis;
if (!scale) {
return null;
}
var offsetForBand = realScaleType === 'scaleBand' && scale.bandwidth ? scale.bandwidth() / 2 : 2;
var offset = (isGrid || isAll) && type === 'category' && scale.bandwidth ? scale.bandwidth() / offsetForBand : 0;
offset = axisType === 'angleAxis' && range && range.length >= 2 ? mathSign(range[0] - range[1]) * 2 * offset : offset;
// The ticks set by user should only affect the ticks adjacent to axis line
if (isGrid && (ticks || niceTicks)) {
var result = (ticks || niceTicks || []).map((entry, index) => {
var scaleContent = duplicateDomain ? duplicateDomain.indexOf(entry) : entry;
return {
// If the scaleContent is not a number, the coordinate will be NaN.
// That could be the case for example with a PointScale and a string as domain.
coordinate: scale(scaleContent) + offset,
value: entry,
offset,
index
};
});
return result.filter(row => !isNan(row.coordinate));
}
// When axis is a categorical axis, but the type of axis is number or the scale of axis is not "auto"
if (isCategorical && categoricalDomain) {
return categoricalDomain.map((entry, index) => ({
coordinate: scale(entry) + offset,
value: entry,
index,
offset
}));
}
if (scale.ticks && !isAll && tickCount != null) {
return scale.ticks(tickCount).map((entry, index) => ({
coordinate: scale(entry) + offset,
value: entry,
offset,
index
}));
}
// When axis has duplicated text, serial numbers are used to generate scale
return scale.domain().map((entry, index) => ({
coordinate: scale(entry) + offset,
value: duplicateDomain ? duplicateDomain[entry] : entry,
index,
offset
}));
};
var EPS = 1e-4;
export var checkDomainOfScale = scale => {
var domain = scale.domain();
if (!domain || domain.length <= 2) {
return;
}
var len = domain.length;
var range = scale.range();
var minValue = Math.min(range[0], range[1]) - EPS;
var maxValue = Math.max(range[0], range[1]) + EPS;
var first = scale(domain[0]);
var last = scale(domain[len - 1]);
if (first < minValue || first > maxValue || last < minValue || last > maxValue) {
scale.domain([domain[0], domain[len - 1]]);
}
};
/**
* Both value and domain are tuples of two numbers
* - but the type stays as array of numbers until we have better support in rest of the app
* @param value input that will be truncated
* @param domain boundaries
* @returns tuple of two numbers
*/
export var truncateByDomain = (value, domain) => {
if (!domain || domain.length !== 2 || !isNumber(domain[0]) || !isNumber(domain[1])) {
return value;
}
var minValue = Math.min(domain[0], domain[1]);
var maxValue = Math.max(domain[0], domain[1]);
var result = [value[0], value[1]];
if (!isNumber(value[0]) || value[0] < minValue) {
result[0] = minValue;
}
if (!isNumber(value[1]) || value[1] > maxValue) {
result[1] = maxValue;
}
if (result[0] > maxValue) {
result[0] = maxValue;
}
if (result[1] < minValue) {
result[1] = minValue;
}
return result;
};
/**
* Stacks all positive numbers above zero and all negative numbers below zero.
*
* If all values in the series are positive then this behaves the same as 'none' stacker.
*
* @param {Array} series from d3-shape Stack
* @return {Array} series with applied offset
*/
export var offsetSign = series => {
var n = series.length;
if (n <= 0) {
return;
}
for (var j = 0, m = series[0].length; j < m; ++j) {
var positive = 0;
var negative = 0;
for (var i = 0; i < n; ++i) {
var value = isNan(series[i][j][1]) ? series[i][j][0] : series[i][j][1];
/* eslint-disable prefer-destructuring, no-param-reassign */
if (value >= 0) {
series[i][j][0] = positive;
series[i][j][1] = positive + value;
positive = series[i][j][1];
} else {
series[i][j][0] = negative;
series[i][j][1] = negative + value;
negative = series[i][j][1];
}
/* eslint-enable prefer-destructuring, no-param-reassign */
}
}
};
/**
* Replaces all negative values with zero when stacking data.
*
* If all values in the series are positive then this behaves the same as 'none' stacker.
*
* @param {Array} series from d3-shape Stack
* @return {Array} series with applied offset
*/
export var offsetPositive = series => {
var n = series.length;
if (n <= 0) {
return;
}
for (var j = 0, m = series[0].length; j < m; ++j) {
var positive = 0;
for (var i = 0; i < n; ++i) {
var value = isNan(series[i][j][1]) ? series[i][j][0] : series[i][j][1];
/* eslint-disable prefer-destructuring, no-param-reassign */
if (value >= 0) {
series[i][j][0] = positive;
series[i][j][1] = positive + value;
positive = series[i][j][1];
} else {
series[i][j][0] = 0;
series[i][j][1] = 0;
}
/* eslint-enable prefer-destructuring, no-param-reassign */
}
}
};
/**
* Function type to compute offset for stacked data.
*
* d3-shape has something fishy going on with its types.
* In @definitelytyped/d3-shape, this function (the offset accessor) is typed as Series<> => void.
* However! When I actually open the storybook I can see that the offset accessor actually receives Array<Series<>>.
* The same I can see in the source code itself:
* https://github.com/DefinitelyTyped/DefinitelyTyped/discussions/66042
* That one unfortunately has no types but we can tell it passes three-dimensional array.
*
* Which leads me to believe that definitelytyped is wrong on this one.
* There's open discussion on this topic without much attention:
* https://github.com/DefinitelyTyped/DefinitelyTyped/discussions/66042
*/
var STACK_OFFSET_MAP = {
sign: offsetSign,
// @ts-expect-error definitelytyped types are incorrect
expand: stackOffsetExpand,
// @ts-expect-error definitelytyped types are incorrect
none: stackOffsetNone,
// @ts-expect-error definitelytyped types are incorrect
silhouette: stackOffsetSilhouette,
// @ts-expect-error definitelytyped types are incorrect
wiggle: stackOffsetWiggle,
positive: offsetPositive
};
export var getStackedData = (data, dataKeys, offsetType) => {
var offsetAccessor = STACK_OFFSET_MAP[offsetType];
var stack = shapeStack().keys(dataKeys).value((d, key) => +getValueByDataKey(d, key, 0)).order(stackOrderNone)
// @ts-expect-error definitelytyped types are incorrect
.offset(offsetAccessor);
return stack(data);
};
/**
* Stack IDs in the external props allow numbers; but internally we use it as an object key
* and object keys are always strings. Also it would be kinda confusing if stackId=8 and stackId='8' were different stacks
* so let's just force a string.
*/
export function getNormalizedStackId(publicStackId) {
return publicStackId == null ? undefined : String(publicStackId);
}
export function getCateCoordinateOfLine(_ref) {
var {
axis,
ticks,
bandSize,
entry,
index,
dataKey
} = _ref;
if (axis.type === 'category') {
// find coordinate of category axis by the value of category
// @ts-expect-error why does this use direct object access instead of getValueByDataKey?
if (!axis.allowDuplicatedCategory && axis.dataKey && !isNullish(entry[axis.dataKey])) {
// @ts-expect-error why does this use direct object access instead of getValueByDataKey?
var matchedTick = findEntryInArray(ticks, 'value', entry[axis.dataKey]);
if (matchedTick) {
return matchedTick.coordinate + bandSize / 2;
}
}
return ticks[index] ? ticks[index].coordinate + bandSize / 2 : null;
}
var value = getValueByDataKey(entry, !isNullish(dataKey) ? dataKey : axis.dataKey);
// @ts-expect-error getValueByDataKey does not validate the output type
return !isNullish(value) ? axis.scale(value) : null;
}
export var getCateCoordinateOfBar = _ref2 => {
var {
axis,
ticks,
offset,
bandSize,
entry,
index
} = _ref2;
if (axis.type === 'category') {
return ticks[index] ? ticks[index].coordinate + offset : null;
}
var value = getValueByDataKey(entry, axis.dataKey, axis.scale.domain()[index]);
return !isNullish(value) ? axis.scale(value) - bandSize / 2 + offset : null;
};
export var getBaseValueOfBar = _ref3 => {
var {
numericAxis
} = _ref3;
var domain = numericAxis.scale.domain();
if (numericAxis.type === 'number') {
// @ts-expect-error type number means the domain has numbers in it but this relationship is not known to typescript
var minValue = Math.min(domain[0], domain[1]);
// @ts-expect-error type number means the domain has numbers in it but this relationship is not known to typescript
var maxValue = Math.max(domain[0], domain[1]);
if (minValue <= 0 && maxValue >= 0) {
return 0;
}
if (maxValue < 0) {
return maxValue;
}
return minValue;
}
return domain[0];
};
var getDomainOfSingle = data => {
var flat = data.flat(2).filter(isNumber);
return [Math.min(...flat), Math.max(...flat)];
};
var makeDomainFinite = domain => {
return [domain[0] === Infinity ? 0 : domain[0], domain[1] === -Infinity ? 0 : domain[1]];
};
export var getDomainOfStackGroups = (stackGroups, startIndex, endIndex) => {
if (stackGroups == null) {
return undefined;
}
return makeDomainFinite(Object.keys(stackGroups).reduce((result, stackId) => {
var group = stackGroups[stackId];
var {
stackedData
} = group;
var domain = stackedData.reduce((res, entry) => {
var s = getDomainOfSingle(entry.slice(startIndex, endIndex + 1));
return [Math.min(res[0], s[0]), Math.max(res[1], s[1])];
}, [Infinity, -Infinity]);
return [Math.min(domain[0], result[0]), Math.max(domain[1], result[1])];
}, [Infinity, -Infinity]));
};
export var MIN_VALUE_REG = /^dataMin[\s]*-[\s]*([0-9]+([.]{1}[0-9]+){0,1})$/;
export var MAX_VALUE_REG = /^dataMax[\s]*\+[\s]*([0-9]+([.]{1}[0-9]+){0,1})$/;
/**
* Calculate the size between two category
* @param {Object} axis The options of axis
* @param {Array} ticks The ticks of axis
* @param {Boolean} isBar if items in axis are bars
* @return {Number} Size
*/
export var getBandSizeOfAxis = (axis, ticks, isBar) => {
if (axis && axis.scale && axis.scale.bandwidth) {
var bandWidth = axis.scale.bandwidth();
if (!isBar || bandWidth > 0) {
return bandWidth;
}
}
if (axis && ticks && ticks.length >= 2) {
var orderedTicks = sortBy(ticks, o => o.coordinate);
var bandSize = Infinity;
for (var i = 1, len = orderedTicks.length; i < len; i++) {
var cur = orderedTicks[i];
var prev = orderedTicks[i - 1];
bandSize = Math.min((cur.coordinate || 0) - (prev.coordinate || 0), bandSize);
}
return bandSize === Infinity ? 0 : bandSize;
}
return isBar ? undefined : 0;
};
export function getTooltipEntry(_ref4) {
var {
tooltipEntrySettings,
dataKey,
payload,
value,
name
} = _ref4;
return _objectSpread(_objectSpread({}, tooltipEntrySettings), {}, {
dataKey,
payload,
value,
name
});
}
export function getTooltipNameProp(nameFromItem, dataKey) {
if (nameFromItem) {
return String(nameFromItem);
}
if (typeof dataKey === 'string') {
return dataKey;
}
return undefined;
}
export function inRange(x, y, layout, polarViewBox, offset) {
if (layout === 'horizontal' || layout === 'vertical') {
var isInRange = x >= offset.left && x <= offset.left + offset.width && y >= offset.top && y <= offset.top + offset.height;
return isInRange ? {
x,
y
} : null;
}
if (polarViewBox) {
return inRangeOfSector({
x,
y
}, polarViewBox);
}
return null;
}
export var getActiveCoordinate = (layout, tooltipTicks, activeIndex, rangeObj) => {
var entry = tooltipTicks.find(tick => tick && tick.index === activeIndex);
if (entry) {
if (layout === 'horizontal') {
return {
x: entry.coordinate,
y: rangeObj.y
};
}
if (layout === 'vertical') {
return {
x: rangeObj.x,
y: entry.coordinate
};
}
if (layout === 'centric') {
var _angle = entry.coordinate;
var {
radius: _radius
} = rangeObj;
return _objectSpread(_objectSpread(_objectSpread({}, rangeObj), polarToCartesian(rangeObj.cx, rangeObj.cy, _radius, _angle)), {}, {
angle: _angle,
radius: _radius
});
}
var radius = entry.coordinate;
var {
angle
} = rangeObj;
return _objectSpread(_objectSpread(_objectSpread({}, rangeObj), polarToCartesian(rangeObj.cx, rangeObj.cy, radius, angle)), {}, {
angle,
radius
});
}
return {
x: 0,
y: 0
};
};
export var calculateTooltipPos = (rangeObj, layout) => {
if (layout === 'horizontal') {
return rangeObj.x;
}
if (layout === 'vertical') {
return rangeObj.y;
}
if (layout === 'centric') {
return rangeObj.angle;
}
return rangeObj.radius;
};