UNPKG

rebrowser-playwright-core

Version:

A drop-in replacement for playwright-core patched with rebrowser-patches. It allows to pass modern automation detection tests.

102 lines (100 loc) 3.94 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.FastStats = void 0; exports.ssim = ssim; /** * Copyright (c) Microsoft Corporation. * * Licensed under the Apache License, Version 2.0 (the 'License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Image channel has a 8-bit depth. const DYNAMIC_RANGE = 2 ** 8 - 1; function ssim(stats, x1, y1, x2, y2) { const mean1 = stats.meanC1(x1, y1, x2, y2); const mean2 = stats.meanC2(x1, y1, x2, y2); const var1 = stats.varianceC1(x1, y1, x2, y2); const var2 = stats.varianceC2(x1, y1, x2, y2); const cov = stats.covariance(x1, y1, x2, y2); const c1 = (0.01 * DYNAMIC_RANGE) ** 2; const c2 = (0.03 * DYNAMIC_RANGE) ** 2; return (2 * mean1 * mean2 + c1) * (2 * cov + c2) / (mean1 ** 2 + mean2 ** 2 + c1) / (var1 + var2 + c2); } class FastStats { constructor(c1, c2) { this.c1 = void 0; this.c2 = void 0; this._partialSumC1 = void 0; this._partialSumC2 = void 0; this._partialSumMult = void 0; this._partialSumSq1 = void 0; this._partialSumSq2 = void 0; this.c1 = c1; this.c2 = c2; const { width, height } = c1; this._partialSumC1 = new Array(width * height); this._partialSumC2 = new Array(width * height); this._partialSumSq1 = new Array(width * height); this._partialSumSq2 = new Array(width * height); this._partialSumMult = new Array(width * height); const recalc = (mx, idx, initial, x, y) => { mx[idx] = initial; if (y > 0) mx[idx] += mx[(y - 1) * width + x]; if (x > 0) mx[idx] += mx[y * width + x - 1]; if (x > 0 && y > 0) mx[idx] -= mx[(y - 1) * width + x - 1]; }; for (let y = 0; y < height; ++y) { for (let x = 0; x < width; ++x) { const idx = y * width + x; recalc(this._partialSumC1, idx, this.c1.data[idx], x, y); recalc(this._partialSumC2, idx, this.c2.data[idx], x, y); recalc(this._partialSumSq1, idx, this.c1.data[idx] * this.c1.data[idx], x, y); recalc(this._partialSumSq2, idx, this.c2.data[idx] * this.c2.data[idx], x, y); recalc(this._partialSumMult, idx, this.c1.data[idx] * this.c2.data[idx], x, y); } } } _sum(partialSum, x1, y1, x2, y2) { const width = this.c1.width; let result = partialSum[y2 * width + x2]; if (y1 > 0) result -= partialSum[(y1 - 1) * width + x2]; if (x1 > 0) result -= partialSum[y2 * width + x1 - 1]; if (x1 > 0 && y1 > 0) result += partialSum[(y1 - 1) * width + x1 - 1]; return result; } meanC1(x1, y1, x2, y2) { const N = (y2 - y1 + 1) * (x2 - x1 + 1); return this._sum(this._partialSumC1, x1, y1, x2, y2) / N; } meanC2(x1, y1, x2, y2) { const N = (y2 - y1 + 1) * (x2 - x1 + 1); return this._sum(this._partialSumC2, x1, y1, x2, y2) / N; } varianceC1(x1, y1, x2, y2) { const N = (y2 - y1 + 1) * (x2 - x1 + 1); return (this._sum(this._partialSumSq1, x1, y1, x2, y2) - this._sum(this._partialSumC1, x1, y1, x2, y2) ** 2 / N) / N; } varianceC2(x1, y1, x2, y2) { const N = (y2 - y1 + 1) * (x2 - x1 + 1); return (this._sum(this._partialSumSq2, x1, y1, x2, y2) - this._sum(this._partialSumC2, x1, y1, x2, y2) ** 2 / N) / N; } covariance(x1, y1, x2, y2) { const N = (y2 - y1 + 1) * (x2 - x1 + 1); return (this._sum(this._partialSumMult, x1, y1, x2, y2) - this._sum(this._partialSumC1, x1, y1, x2, y2) * this._sum(this._partialSumC2, x1, y1, x2, y2) / N) / N; } } exports.FastStats = FastStats;