react-native-snarkjs
Version:
zkSNARKs implementation in JavaScript
399 lines (314 loc) • 12.4 kB
JavaScript
/*
Copyright 2021 0kims association.
This file is part of snarkjs.
snarkjs is a free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
snarkjs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
snarkjs. If not, see <https://www.gnu.org/licenses/>.
*/
/* Implementation of this paper: https://eprint.iacr.org/2019/953.pdf */
import { Scalar } from "react-native-ffjavascript";
import * as curves from "./curves.js";
import { utils } from "react-native-ffjavascript";
const {unstringifyBigInts} = utils;
import jsSha3 from "js-sha3";
const { keccak256 } = jsSha3;
export default async function plonkVerify(vk_verifier, publicSignals, proof, logger) {
vk_verifier = unstringifyBigInts(vk_verifier);
proof = unstringifyBigInts(proof);
publicSignals = unstringifyBigInts(publicSignals);
const curve = await curves.getCurveFromName(vk_verifier.curve);
const Fr = curve.Fr;
const G1 = curve.G1;
proof = fromObjectProof(curve,proof);
vk_verifier = fromObjectVk(curve, vk_verifier);
if (!isWellConstructed(curve, proof)) {
logger.error("Proof is not well constructed");
return false;
}
const challanges = calculateChallanges(curve, proof);
if (logger) {
logger.debug("beta: " + Fr.toString(challanges.beta, 16));
logger.debug("gamma: " + Fr.toString(challanges.gamma, 16));
logger.debug("alpha: " + Fr.toString(challanges.alpha, 16));
logger.debug("xi: " + Fr.toString(challanges.xi, 16));
logger.debug("v1: " + Fr.toString(challanges.v[1], 16));
logger.debug("v6: " + Fr.toString(challanges.v[6], 16));
logger.debug("u: " + Fr.toString(challanges.u, 16));
}
const L = calculateLagrangeEvaluations(curve, challanges, vk_verifier);
if (logger) {
logger.debug("Lagrange Evaluations: ");
for (let i=1; i<L.length; i++) {
logger.debug(`L${i}(xi)=` + Fr.toString(L[i], 16));
}
}
if (publicSignals.length != vk_verifier.nPublic) {
logger.error("Number of public signals does not match with vk");
return false;
}
const pl = calculatePl(curve, publicSignals, L);
if (logger) {
logger.debug("Pl: " + Fr.toString(pl, 16));
}
const t = calculateT(curve, proof, challanges, pl, L[1]);
if (logger) {
logger.debug("t: " + Fr.toString(t, 16));
}
const D = calculateD(curve, proof, challanges, vk_verifier, L[1]);
if (logger) {
logger.debug("D: " + G1.toString(G1.toAffine(D), 16));
}
const F = calculateF(curve, proof, challanges, vk_verifier, D);
if (logger) {
logger.debug("F: " + G1.toString(G1.toAffine(F), 16));
}
const E = calculateE(curve, proof, challanges, vk_verifier, t);
if (logger) {
logger.debug("E: " + G1.toString(G1.toAffine(E), 16));
}
const res = await isValidPairing(curve, proof, challanges, vk_verifier, E, F);
if (logger) {
if (res) {
logger.info("OK!");
} else {
logger.warn("Invalid Proof");
}
}
return res;
}
function fromObjectProof(curve, proof) {
const G1 = curve.G1;
const Fr = curve.Fr;
const res = {};
res.A = G1.fromObject(proof.A);
res.B = G1.fromObject(proof.B);
res.C = G1.fromObject(proof.C);
res.Z = G1.fromObject(proof.Z);
res.T1 = G1.fromObject(proof.T1);
res.T2 = G1.fromObject(proof.T2);
res.T3 = G1.fromObject(proof.T3);
res.eval_a = Fr.fromObject(proof.eval_a);
res.eval_b = Fr.fromObject(proof.eval_b);
res.eval_c = Fr.fromObject(proof.eval_c);
res.eval_zw = Fr.fromObject(proof.eval_zw);
res.eval_s1 = Fr.fromObject(proof.eval_s1);
res.eval_s2 = Fr.fromObject(proof.eval_s2);
res.eval_r = Fr.fromObject(proof.eval_r);
res.Wxi = G1.fromObject(proof.Wxi);
res.Wxiw = G1.fromObject(proof.Wxiw);
return res;
}
function fromObjectVk(curve, vk) {
const G1 = curve.G1;
const G2 = curve.G2;
const Fr = curve.Fr;
const res = vk;
res.Qm = G1.fromObject(vk.Qm);
res.Ql = G1.fromObject(vk.Ql);
res.Qr = G1.fromObject(vk.Qr);
res.Qo = G1.fromObject(vk.Qo);
res.Qc = G1.fromObject(vk.Qc);
res.S1 = G1.fromObject(vk.S1);
res.S2 = G1.fromObject(vk.S2);
res.S3 = G1.fromObject(vk.S3);
res.k1 = Fr.fromObject(vk.k1);
res.k2 = Fr.fromObject(vk.k2);
res.X_2 = G2.fromObject(vk.X_2);
return res;
}
function isWellConstructed(curve, proof) {
const G1 = curve.G1;
if (!G1.isValid(proof.A)) return false;
if (!G1.isValid(proof.B)) return false;
if (!G1.isValid(proof.C)) return false;
if (!G1.isValid(proof.Z)) return false;
if (!G1.isValid(proof.T1)) return false;
if (!G1.isValid(proof.T2)) return false;
if (!G1.isValid(proof.T3)) return false;
if (!G1.isValid(proof.Wxi)) return false;
if (!G1.isValid(proof.Wxiw)) return false;
return true;
}
function calculateChallanges(curve, proof) {
const G1 = curve.G1;
const Fr = curve.Fr;
const n8r = curve.Fr.n8;
const res = {};
const transcript1 = new Uint8Array(G1.F.n8*2*3);
G1.toRprUncompressed(transcript1, 0, proof.A);
G1.toRprUncompressed(transcript1, G1.F.n8*2, proof.B);
G1.toRprUncompressed(transcript1, G1.F.n8*4, proof.C);
res.beta = hashToFr(curve, transcript1);
const transcript2 = new Uint8Array(n8r);
Fr.toRprBE(transcript2, 0, res.beta);
res.gamma = hashToFr(curve, transcript2);
const transcript3 = new Uint8Array(G1.F.n8*2);
G1.toRprUncompressed(transcript3, 0, proof.Z);
res.alpha = hashToFr(curve, transcript3);
const transcript4 = new Uint8Array(G1.F.n8*2*3);
G1.toRprUncompressed(transcript4, 0, proof.T1);
G1.toRprUncompressed(transcript4, G1.F.n8*2, proof.T2);
G1.toRprUncompressed(transcript4, G1.F.n8*4, proof.T3);
res.xi = hashToFr(curve, transcript4);
const transcript5 = new Uint8Array(n8r*7);
Fr.toRprBE(transcript5, 0, proof.eval_a);
Fr.toRprBE(transcript5, n8r, proof.eval_b);
Fr.toRprBE(transcript5, n8r*2, proof.eval_c);
Fr.toRprBE(transcript5, n8r*3, proof.eval_s1);
Fr.toRprBE(transcript5, n8r*4, proof.eval_s2);
Fr.toRprBE(transcript5, n8r*5, proof.eval_zw);
Fr.toRprBE(transcript5, n8r*6, proof.eval_r);
res.v = [];
res.v[1] = hashToFr(curve, transcript5);
for (let i=2; i<=6; i++ ) res.v[i] = Fr.mul(res.v[i-1], res.v[1]);
const transcript6 = new Uint8Array(G1.F.n8*2*2);
G1.toRprUncompressed(transcript6, 0, proof.Wxi);
G1.toRprUncompressed(transcript6, G1.F.n8*2, proof.Wxiw);
res.u = hashToFr(curve, transcript6);
return res;
}
function calculateLagrangeEvaluations(curve, challanges, vk) {
const Fr = curve.Fr;
let xin = challanges.xi;
let domainSize = 1;
for (let i=0; i<vk.power; i++) {
xin = Fr.square(xin);
domainSize *= 2;
}
challanges.xin = xin;
challanges.zh = Fr.sub(xin, Fr.one);
const L = [];
const n = Fr.e(domainSize);
let w = Fr.one;
for (let i=1; i<=Math.max(1, vk.nPublic); i++) {
L[i] = Fr.div(Fr.mul(w, challanges.zh), Fr.mul(n, Fr.sub(challanges.xi, w)));
w = Fr.mul(w, Fr.w[vk.power]);
}
return L;
}
function hashToFr(curve, transcript) {
const v = Scalar.fromRprBE(new Uint8Array(keccak256.arrayBuffer(transcript)));
return curve.Fr.e(v);
}
function calculatePl(curve, publicSignals, L) {
const Fr = curve.Fr;
let pl = Fr.zero;
for (let i=0; i<publicSignals.length; i++) {
const w = Fr.e(publicSignals[i]);
pl = Fr.sub(pl, Fr.mul(w, L[i+1]));
}
return pl;
}
function calculateT(curve, proof, challanges, pl, l1) {
const Fr = curve.Fr;
let num = proof.eval_r;
num = Fr.add(num, pl);
let e1 = proof.eval_a;
e1 = Fr.add(e1, Fr.mul(challanges.beta, proof.eval_s1));
e1 = Fr.add(e1, challanges.gamma);
let e2 = proof.eval_b;
e2 = Fr.add(e2, Fr.mul(challanges.beta, proof.eval_s2));
e2 = Fr.add(e2, challanges.gamma);
let e3 = proof.eval_c;
e3 = Fr.add(e3, challanges.gamma);
let e = Fr.mul(Fr.mul(e1, e2), e3);
e = Fr.mul(e, proof.eval_zw);
e = Fr.mul(e, challanges.alpha);
num = Fr.sub(num, e);
num = Fr.sub(num, Fr.mul(l1, Fr.square(challanges.alpha)));
const t = Fr.div(num, challanges.zh);
return t;
}
function calculateD(curve, proof, challanges, vk, l1) {
const G1 = curve.G1;
const Fr = curve.Fr;
let s1 = Fr.mul(Fr.mul(proof.eval_a, proof.eval_b), challanges.v[1]);
let res = G1.timesFr(vk.Qm, s1);
let s2 = Fr.mul(proof.eval_a, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Ql, s2));
let s3 = Fr.mul(proof.eval_b, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Qr, s3));
let s4 = Fr.mul(proof.eval_c, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Qo, s4));
res = G1.add(res, G1.timesFr(vk.Qc, challanges.v[1]));
const betaxi = Fr.mul(challanges.beta, challanges.xi);
let s6a = proof.eval_a;
s6a = Fr.add(s6a, betaxi);
s6a = Fr.add(s6a, challanges.gamma);
let s6b = proof.eval_b;
s6b = Fr.add(s6b, Fr.mul(betaxi, vk.k1));
s6b = Fr.add(s6b, challanges.gamma);
let s6c = proof.eval_c;
s6c = Fr.add(s6c, Fr.mul(betaxi, vk.k2));
s6c = Fr.add(s6c, challanges.gamma);
let s6 = Fr.mul(Fr.mul(s6a, s6b), s6c);
s6 = Fr.mul(s6, Fr.mul(challanges.alpha, challanges.v[1]));
let s6d = Fr.mul(Fr.mul(l1, Fr.square(challanges.alpha)), challanges.v[1]);
s6 = Fr.add(s6, s6d);
s6 = Fr.add(s6, challanges.u);
res = G1.add(res, G1.timesFr(proof.Z, s6));
let s7a = proof.eval_a;
s7a = Fr.add(s7a, Fr.mul(challanges.beta, proof.eval_s1));
s7a = Fr.add(s7a, challanges.gamma);
let s7b = proof.eval_b;
s7b = Fr.add(s7b, Fr.mul(challanges.beta, proof.eval_s2));
s7b = Fr.add(s7b, challanges.gamma);
let s7 = Fr.mul(s7a, s7b);
s7 = Fr.mul(s7, challanges.alpha);
s7 = Fr.mul(s7, challanges.v[1]);
s7 = Fr.mul(s7, challanges.beta);
s7 = Fr.mul(s7, proof.eval_zw);
res = G1.sub(res, G1.timesFr(vk.S3, s7));
return res;
}
function calculateF(curve, proof, challanges, vk, D) {
const G1 = curve.G1;
const Fr = curve.Fr;
let res = proof.T1;
res = G1.add(res, G1.timesFr(proof.T2, challanges.xin));
res = G1.add(res, G1.timesFr(proof.T3, Fr.square(challanges.xin)));
res = G1.add(res, D);
res = G1.add(res, G1.timesFr(proof.A, challanges.v[2]));
res = G1.add(res, G1.timesFr(proof.B, challanges.v[3]));
res = G1.add(res, G1.timesFr(proof.C, challanges.v[4]));
res = G1.add(res, G1.timesFr(vk.S1, challanges.v[5]));
res = G1.add(res, G1.timesFr(vk.S2, challanges.v[6]));
return res;
}
function calculateE(curve, proof, challanges, vk, t) {
const G1 = curve.G1;
const Fr = curve.Fr;
let s = t;
s = Fr.add(s, Fr.mul(challanges.v[1], proof.eval_r));
s = Fr.add(s, Fr.mul(challanges.v[2], proof.eval_a));
s = Fr.add(s, Fr.mul(challanges.v[3], proof.eval_b));
s = Fr.add(s, Fr.mul(challanges.v[4], proof.eval_c));
s = Fr.add(s, Fr.mul(challanges.v[5], proof.eval_s1));
s = Fr.add(s, Fr.mul(challanges.v[6], proof.eval_s2));
s = Fr.add(s, Fr.mul(challanges.u, proof.eval_zw));
const res = G1.timesFr(G1.one, s);
return res;
}
async function isValidPairing(curve, proof, challanges, vk, E, F) {
const G1 = curve.G1;
const Fr = curve.Fr;
let A1 = proof.Wxi;
A1 = G1.add(A1, G1.timesFr(proof.Wxiw, challanges.u));
let B1 = G1.timesFr(proof.Wxi, challanges.xi);
const s = Fr.mul(Fr.mul(challanges.u, challanges.xi), Fr.w[vk.power]);
B1 = G1.add(B1, G1.timesFr(proof.Wxiw, s));
B1 = G1.add(B1, F);
B1 = G1.sub(B1, E);
const res = await curve.pairingEq(
G1.neg(A1) , vk.X_2,
B1 , curve.G2.one
);
return res;
}