UNPKG

react-native-reanimated

Version:

More powerful alternative to Animated library for React Native.

295 lines (270 loc) 9.65 kB
'use strict'; import { logger } from "../logger/index.js"; /** * Spring animation configuration. * * @param mass - The weight of the spring. Reducing this value makes the * animation faster. Defaults to 1. * @param damping - How quickly a spring slows down. Higher damping means the * spring will come to rest faster. Defaults to 10. * @param duration - Length of the animation (in milliseconds). Defaults to * 2000. * @param dampingRatio - How damped the spring is. Value 1 means the spring is * critically damped, and value `>`1 means the spring is overdamped. Defaults * to 0.5. * @param stiffness - How bouncy the spring is. Defaults to 100. * @param velocity - Initial velocity applied to the spring equation. Defaults * to 0. * @param overshootClamping - Whether a spring can bounce over the `toValue`. * Defaults to false. * @param restDisplacementThreshold - The displacement below which the spring * will snap to toValue without further oscillations. Defaults to 0.01. * @param restSpeedThreshold - The speed in pixels per second from which the * spring will snap to toValue without further oscillations. Defaults to 2. * @param reduceMotion - Determines how the animation responds to the device's * reduced motion accessibility setting. Default to `ReduceMotion.System` - * {@link ReduceMotion}. * @see https://docs.swmansion.com/react-native-reanimated/docs/animations/withSpring/#config- */ // This type contains all the properties from SpringConfig, which are changed to be required, // except for optional 'reduceMotion' and 'clamp' export function checkIfConfigIsValid(config) { 'worklet'; let errorMessage = ''; ['stiffness', 'damping', 'dampingRatio', 'restDisplacementThreshold', 'restSpeedThreshold', 'mass'].forEach(prop => { const value = config[prop]; if (value <= 0) { errorMessage += `, ${prop} must be grater than zero but got ${value}`; } }); if (config.duration < 0) { errorMessage += `, duration can't be negative, got ${config.duration}`; } if (config.clamp?.min && config.clamp?.max && config.clamp.min > config.clamp.max) { errorMessage += `, clamp.min should be lower than clamp.max, got clamp: {min: ${config.clamp.min}, max: ${config.clamp.max}} `; } if (errorMessage !== '') { logger.warn('Invalid spring config' + errorMessage); } return errorMessage === ''; } // ts-prune-ignore-next This function is exported to be tested export function bisectRoot({ min, max, func, maxIterations = 20 }) { 'worklet'; const ACCURACY = 0.00005; let idx = maxIterations; let current = (max + min) / 2; while (Math.abs(func(current)) > ACCURACY && idx > 0) { idx -= 1; if (func(current) < 0) { min = current; } else { max = current; } current = (min + max) / 2; } return current; } export function initialCalculations(mass = 0, config) { 'worklet'; if (config.skipAnimation) { return { zeta: 0, omega0: 0, omega1: 0 }; } if (config.useDuration) { const { stiffness: k, dampingRatio: zeta } = config; /** * Omega0 and omega1 denote angular frequency and natural angular frequency, * see this link for formulas: * https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/15-5-damped-oscillations/ */ const omega0 = Math.sqrt(k / mass); const omega1 = omega0 * Math.sqrt(1 - zeta ** 2); return { zeta, omega0, omega1 }; } else { const { damping: c, mass: m, stiffness: k } = config; const zeta = c / (2 * Math.sqrt(k * m)); // damping ratio const omega0 = Math.sqrt(k / m); // undamped angular frequency of the oscillator (rad/ms) const omega1 = omega0 * Math.sqrt(1 - zeta ** 2); // exponential decay return { zeta, omega0, omega1 }; } } /** * We make an assumption that we can manipulate zeta without changing duration * of movement. According to theory this change is small and tests shows that we * can indeed ignore it. */ export function scaleZetaToMatchClamps(animation, clamp) { 'worklet'; const { zeta, toValue, startValue } = animation; const toValueNum = Number(toValue); if (toValueNum === startValue) { return zeta; } const [firstBound, secondBound] = toValueNum - startValue > 0 ? [clamp.min, clamp.max] : [clamp.max, clamp.min]; /** * The extrema we get from equation below are relative (we obtain a ratio), To * get absolute extrema we convert it as follows: * * AbsoluteExtremum = startValue ± RelativeExtremum * (toValue - startValue) * Where ± denotes: * * - If extremum is over the target * - Otherwise */ const relativeExtremum1 = secondBound !== undefined ? Math.abs((secondBound - toValueNum) / (toValueNum - startValue)) : undefined; const relativeExtremum2 = firstBound !== undefined ? Math.abs((firstBound - toValueNum) / (toValueNum - startValue)) : undefined; /** * Use this formula http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html to * calculate first two extrema. These extrema are located where cos = +- 1 * * Therefore the first two extrema are: * * Math.exp(-zeta * Math.PI); (over the target) * Math.exp(-zeta * 2 * Math.PI); (before the target) */ const newZeta1 = relativeExtremum1 !== undefined ? Math.abs(Math.log(relativeExtremum1) / Math.PI) : undefined; const newZeta2 = relativeExtremum2 !== undefined ? Math.abs(Math.log(relativeExtremum2) / (2 * Math.PI)) : undefined; const zetaSatisfyingClamp = [newZeta1, newZeta2].filter(x => x !== undefined); // The bigger is zeta the smaller are bounces, we return the biggest one // because it should satisfy all conditions return Math.max(...zetaSatisfyingClamp, zeta); } /** Runs before initial */ export function calculateNewMassToMatchDuration(x0, config, v0) { 'worklet'; if (config.skipAnimation) { return 0; } /** * Use this formula: * https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/15%3A_Oscillations/15.06%3A_Damped_Oscillations * to find the asymptote and estimate the damping that gives us the expected * duration * * ⎛ ⎛ c⎞ ⎞ * ⎜-⎜──⎟ ⋅ duration⎟ * ⎝ ⎝2m⎠ ⎠ * A ⋅ e = threshold * * * Amplitude calculated using "Conservation of energy" * _________________ * ╱ 2 2 * ╱ m ⋅ v0 + k ⋅ x0 * amplitude = ╱ ───────────────── * ╲╱ k * * And replace mass with damping ratio which is provided: m = (c^2)/(4 * k * zeta^2) */ const { stiffness: k, dampingRatio: zeta, restSpeedThreshold: threshold, duration } = config; const durationForMass = mass => { 'worklet'; const amplitude = (mass * v0 * v0 + k * x0 * x0) / (Math.exp(1 - 0.5 * zeta) * k); const c = zeta * 2 * Math.sqrt(k * mass); return 1000 * (-2 * mass / c) * Math.log(threshold * 0.01 / amplitude) - duration; }; // Bisection turns out to be much faster than Newton's method in our case return bisectRoot({ min: 0, max: 100, func: durationForMass }); } export function criticallyDampedSpringCalculations(animation, precalculatedValues) { 'worklet'; const { toValue } = animation; const { v0, x0, omega0, t } = precalculatedValues; const criticallyDampedEnvelope = Math.exp(-omega0 * t); const criticallyDampedPosition = toValue - criticallyDampedEnvelope * (x0 + (v0 + omega0 * x0) * t); const criticallyDampedVelocity = criticallyDampedEnvelope * (v0 * (t * omega0 - 1) + t * x0 * omega0 * omega0); return { position: criticallyDampedPosition, velocity: criticallyDampedVelocity }; } export function underDampedSpringCalculations(animation, precalculatedValues) { 'worklet'; const { toValue, current, velocity } = animation; const { zeta, t, omega0, omega1 } = precalculatedValues; const v0 = -velocity; const x0 = toValue - current; const sin1 = Math.sin(omega1 * t); const cos1 = Math.cos(omega1 * t); // under damped const underDampedEnvelope = Math.exp(-zeta * omega0 * t); const underDampedFrag1 = underDampedEnvelope * (sin1 * ((v0 + zeta * omega0 * x0) / omega1) + x0 * cos1); const underDampedPosition = toValue - underDampedFrag1; // This looks crazy -- it's actually just the derivative of the oscillation function const underDampedVelocity = zeta * omega0 * underDampedFrag1 - underDampedEnvelope * (cos1 * (v0 + zeta * omega0 * x0) - omega1 * x0 * sin1); return { position: underDampedPosition, velocity: underDampedVelocity }; } export function isAnimationTerminatingCalculation(animation, config) { 'worklet'; const { toValue, velocity, startValue, current } = animation; const isOvershooting = config.overshootClamping ? current > toValue && startValue < toValue || current < toValue && startValue > toValue : false; const isVelocity = Math.abs(velocity) < config.restSpeedThreshold; const isDisplacement = Math.abs(toValue - current) < config.restDisplacementThreshold; return { isOvershooting, isVelocity, isDisplacement }; } //# sourceMappingURL=springUtils.js.map