UNPKG

react-native-reanimated

Version:

More powerful alternative to Animated library for React Native.

136 lines (117 loc) 3.67 kB
'use strict'; import { ReanimatedError } from "./errors.js"; /** * https://github.com/gre/bezier-easing BezierEasing - use bezier curve for * transition easing function by Gaëtan Renaudeau 2014 - 2015 – MIT License */ // These values are established by empiricism with tests (tradeoff: performance VS precision) const NEWTON_ITERATIONS = 4; const NEWTON_MIN_SLOPE = 0.001; const SUBDIVISION_PRECISION = 0.0000001; const SUBDIVISION_MAX_ITERATIONS = 10; const kSplineTableSize = 11; const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); function A(aA1, aA2) { 'worklet'; return 1.0 - 3.0 * aA2 + 3.0 * aA1; } function B(aA1, aA2) { 'worklet'; return 3.0 * aA2 - 6.0 * aA1; } function C(aA1) { 'worklet'; return 3.0 * aA1; } // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. function calcBezier(aT, aA1, aA2) { 'worklet'; return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2. function getSlope(aT, aA1, aA2) { 'worklet'; return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } function binarySubdivide(aX, aA, aB, mX1, mX2) { 'worklet'; let currentX; let currentT; let i = 0; do { currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if (currentX > 0.0) { aB = currentT; } else { aA = currentT; } } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS); return currentT; } function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) { 'worklet'; for (let i = 0; i < NEWTON_ITERATIONS; ++i) { const currentSlope = getSlope(aGuessT, mX1, mX2); if (currentSlope === 0.0) { return aGuessT; } const currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= currentX / currentSlope; } return aGuessT; } export function Bezier(mX1, mY1, mX2, mY2) { 'worklet'; function LinearEasing(x) { 'worklet'; return x; } if (!(mX1 >= 0 && mX1 <= 1 && mX2 >= 0 && mX2 <= 1)) { throw new ReanimatedError('Bezier x values must be in [0, 1] range.'); } if (mX1 === mY1 && mX2 === mY2) { return LinearEasing; } const sampleValues = new Array(kSplineTableSize); // Precompute samples table for (let i = 0; i < kSplineTableSize; ++i) { sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); } function getTForX(aX) { 'worklet'; let intervalStart = 0.0; let currentSample = 1; const lastSample = kSplineTableSize - 1; for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) { intervalStart += kSampleStepSize; } --currentSample; // Interpolate to provide an initial guess for t const dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); const guessForT = intervalStart + dist * kSampleStepSize; const initialSlope = getSlope(guessForT, mX1, mX2); if (initialSlope >= NEWTON_MIN_SLOPE) { return newtonRaphsonIterate(aX, guessForT, mX1, mX2); } else if (initialSlope === 0.0) { return guessForT; } else { return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2); } } return function BezierEasing(x) { 'worklet'; if (mX1 === mY1 && mX2 === mY2) { return x; // linear } // Because JavaScript number are imprecise, we should guarantee the extremes are right. if (x === 0) { return 0; } if (x === 1) { return 1; } return calcBezier(getTForX(x), mY1, mY2); }; } //# sourceMappingURL=Bezier.js.map