react-native-gesture-handler
Version:
Declarative API exposing native platform touch and gesture system to React Native
183 lines (151 loc) • 4.97 kB
text/typescript
// Implementation taken from Flutter's LeastSquareSolver
// https://github.com/flutter/flutter/blob/master/packages/flutter/lib/src/gestures/lsq_solver.dart
class Vector {
private offset: number;
private length: number;
private elements: number[];
constructor(length: number) {
this.offset = 0;
this.length = length;
this.elements = new Array<number>(length);
}
public static fromVOL(
values: number[],
offset: number,
length: number
): Vector {
const result = new Vector(0);
result.offset = offset;
result.length = length;
result.elements = values;
return result;
}
public get(index: number): number {
return this.elements[this.offset + index];
}
public set(index: number, value: number): void {
this.elements[this.offset + index] = value;
}
public dot(other: Vector): number {
let result = 0;
for (let i = 0; i < this.length; i++) {
result += this.get(i) * other.get(i);
}
return result;
}
public norm() {
return Math.sqrt(this.dot(this));
}
}
class Matrix {
private columns: number;
private elements: number[];
constructor(rows: number, columns: number) {
this.columns = columns;
this.elements = new Array<number>(rows * columns);
}
public get(row: number, column: number): number {
return this.elements[row * this.columns + column];
}
public set(row: number, column: number, value: number): void {
this.elements[row * this.columns + column] = value;
}
public getRow(row: number): Vector {
return Vector.fromVOL(this.elements, row * this.columns, this.columns);
}
}
// An nth degree polynomial fit to a dataset.
class PolynomialFit {
// The polynomial coefficients of the fit.
//
// For each `i`, the element `coefficients[i]` is the coefficient of
// the `i`-th power of the variable.
public coefficients: number[];
// Creates a polynomial fit of the given degree.
//
// There are n + 1 coefficients in a fit of degree n.
constructor(degree: number) {
this.coefficients = new Array<number>(degree + 1);
}
}
const precisionErrorTolerance = 1e-10;
// Uses the least-squares algorithm to fit a polynomial to a set of data.
export default class LeastSquareSolver {
// The x-coordinates of each data point.
private x: number[];
// The y-coordinates of each data point.
private y: number[];
// The weight to use for each data point.
private w: number[];
// Creates a least-squares solver.
//
// The [x], [y], and [w] arguments must not be null.
constructor(x: number[], y: number[], w: number[]) {
this.x = x;
this.y = y;
this.w = w;
}
// Fits a polynomial of the given degree to the data points.
//
// When there is not enough data to fit a curve null is returned.
public solve(degree: number): PolynomialFit | null {
if (degree > this.x.length) {
// Not enough data to fit a curve.
return null;
}
const result = new PolynomialFit(degree);
// Shorthands for the purpose of notation equivalence to original C++ code.
const m = this.x.length;
const n = degree + 1;
// Expand the X vector to a matrix A, pre-multiplied by the weights.
const a = new Matrix(n, m);
for (let h = 0; h < m; h++) {
a.set(0, h, this.w[h]);
for (let i = 1; i < n; i++) {
a.set(i, h, a.get(i - 1, h) * this.x[h]);
}
}
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
// Orthonormal basis, column-major ordVectorer.
const q = new Matrix(n, m);
// Upper triangular matrix, row-major order.
const r = new Matrix(n, m);
for (let j = 0; j < n; j += 1) {
for (let h = 0; h < m; h += 1) {
q.set(j, h, a.get(j, h));
}
for (let i = 0; i < j; i += 1) {
const dot = q.getRow(j).dot(q.getRow(i));
for (let h = 0; h < m; h += 1) {
q.set(j, h, q.get(j, h) - dot * q.get(i, h));
}
}
const norm = q.getRow(j).norm();
if (norm < precisionErrorTolerance) {
// Vectors are linearly dependent or zero so no solution.
return null;
}
const inverseNorm = 1.0 / norm;
for (let h = 0; h < m; h += 1) {
q.set(j, h, q.get(j, h) * inverseNorm);
}
for (let i = 0; i < n; i += 1) {
r.set(j, i, i < j ? 0.0 : q.getRow(j).dot(a.getRow(i)));
}
}
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
// We just work from bottom-right to top-left calculating B's coefficients.
const wy = new Vector(m);
for (let h = 0; h < m; h += 1) {
wy.set(h, this.y[h] * this.w[h]);
}
for (let i = n - 1; i >= 0; i -= 1) {
result.coefficients[i] = q.getRow(i).dot(wy);
for (let j = n - 1; j > i; j -= 1) {
result.coefficients[i] -= r.get(i, j) * result.coefficients[j];
}
result.coefficients[i] /= r.get(i, i);
}
return result;
}
}