UNPKG

react-native-ffjavascript

Version:

Finite Field Library in Javascript (react-native)

307 lines (252 loc) 6.97 kB
/* global BigInt */ import * as Scalar from "./scalar.js"; import * as futils from "./futils.js"; import buildSqrt from "./fsqrt.js"; import {getRandomBytes} from "./random.js"; export default class ZqField { constructor(p) { this.type="F1"; this.one = BigInt(1); this.zero = BigInt(0); this.p = BigInt(p); this.m = 1; this.negone = this.p-this.one; this.two = BigInt(2); this.half = this.p >> this.one; this.bitLength = Scalar.bitLength(this.p); this.mask = (this.one << BigInt(this.bitLength)) - this.one; this.n64 = Math.floor((this.bitLength - 1) / 64)+1; this.n32 = this.n64*2; this.n8 = this.n64*8; this.R = this.e(this.one << BigInt(this.n64*64)); this.Ri = this.inv(this.R); const e = this.negone >> this.one; this.nqr = this.two; let r = this.pow(this.nqr, e); while (!this.eq(r, this.negone)) { this.nqr = this.nqr + this.one; r = this.pow(this.nqr, e); } this.s = 0; this.t = this.negone; while ((this.t & this.one) == this.zero) { this.s = this.s + 1; this.t = this.t >> this.one; } this.nqr_to_t = this.pow(this.nqr, this.t); buildSqrt(this); } e(a,b) { let res; if (!b) { res = BigInt(a); } else if (b==16) { res = BigInt("0x"+a); } if (res < 0) { let nres = -res; if (nres >= this.p) nres = nres % this.p; return this.p - nres; } else { return (res>= this.p) ? res%this.p : res; } } add(a, b) { const res = a + b; return res >= this.p ? res-this.p : res; } sub(a, b) { return (a >= b) ? a-b : this.p-b+a; } neg(a) { return a ? this.p-a : a; } mul(a, b) { return (a*b)%this.p; } mulScalar(base, s) { return (base * this.e(s)) % this.p; } square(a) { return (a*a) % this.p; } eq(a, b) { return a==b; } neq(a, b) { return a!=b; } lt(a, b) { const aa = (a > this.half) ? a - this.p : a; const bb = (b > this.half) ? b - this.p : b; return aa < bb; } gt(a, b) { const aa = (a > this.half) ? a - this.p : a; const bb = (b > this.half) ? b - this.p : b; return aa > bb; } leq(a, b) { const aa = (a > this.half) ? a - this.p : a; const bb = (b > this.half) ? b - this.p : b; return aa <= bb; } geq(a, b) { const aa = (a > this.half) ? a - this.p : a; const bb = (b > this.half) ? b - this.p : b; return aa >= bb; } div(a, b) { return this.mul(a, this.inv(b)); } idiv(a, b) { if (!b) throw new Error("Division by zero"); return a / b; } inv(a) { if (!a) throw new Error("Division by zero"); let t = this.zero; let r = this.p; let newt = this.one; let newr = a % this.p; while (newr) { let q = r/newr; [t, newt] = [newt, t-q*newt]; [r, newr] = [newr, r-q*newr]; } if (t<this.zero) t += this.p; return t; } mod(a, b) { return a % b; } pow(b, e) { return futils.exp(this, b, e); } exp(b, e) { return futils.exp(this, b, e); } band(a, b) { const res = ((a & b) & this.mask); return res >= this.p ? res-this.p : res; } bor(a, b) { const res = ((a | b) & this.mask); return res >= this.p ? res-this.p : res; } bxor(a, b) { const res = ((a ^ b) & this.mask); return res >= this.p ? res-this.p : res; } bnot(a) { const res = a ^ this.mask; return res >= this.p ? res-this.p : res; } shl(a, b) { if (Number(b) < this.bitLength) { const res = (a << b) & this.mask; return res >= this.p ? res-this.p : res; } else { const nb = this.p - b; if (Number(nb) < this.bitLength) { return a >> nb; } else { return this.zero; } } } shr(a, b) { if (Number(b) < this.bitLength) { return a >> b; } else { const nb = this.p - b; if (Number(nb) < this.bitLength) { const res = (a << nb) & this.mask; return res >= this.p ? res-this.p : res; } else { return 0; } } } land(a, b) { return (a && b) ? this.one : this.zero; } lor(a, b) { return (a || b) ? this.one : this.zero; } lnot(a) { return (a) ? this.zero : this.one; } sqrt_old(n) { if (n == this.zero) return this.zero; // Test that have solution const res = this.pow(n, this.negone >> this.one); if ( res != this.one ) return null; let m = this.s; let c = this.nqr_to_t; let t = this.pow(n, this.t); let r = this.pow(n, this.add(this.t, this.one) >> this.one ); while ( t != this.one ) { let sq = this.square(t); let i = 1; while (sq != this.one ) { i++; sq = this.square(sq); } // b = c ^ m-i-1 let b = c; for (let j=0; j< m-i-1; j ++) b = this.square(b); m = i; c = this.square(b); t = this.mul(t, c); r = this.mul(r, b); } if (r > (this.p >> this.one)) { r = this.neg(r); } return r; } normalize(a, b) { a = BigInt(a,b); if (a < 0) { let na = -a; if (na >= this.p) na = na % this.p; return this.p - na; } else { return (a>= this.p) ? a%this.p : a; } } random() { const nBytes = (this.bitLength*2 / 8); let res =this.zero; for (let i=0; i<nBytes; i++) { res = (res << BigInt(8)) + BigInt(getRandomBytes(1)[0]); } return res % this.p; } toString(a, base) { let vs; if (a > this.half) { const v = this.p-a; vs = "-"+v.toString(base); } else { vs = a.toString(base); } return vs; } isZero(a) { return a == this.zero; } fromRng(rng) { let v; do { v=this.zero; for (let i=0; i<this.n64; i++) { v += rng.nextU64() << BigInt(64 *i); } v &= this.mask; } while (v >= this.p); v = (v * this.Ri) % this.p; // Convert from montgomery return v; } }