UNPKG

react-native-executorch

Version:

An easy way to run AI models in React Native with ExecuTorch

146 lines (131 loc) 3.52 kB
import { useCallback, useEffect, useState } from 'react'; import { ResourceSource } from '../../types/common'; import { ChatConfig, GenerationConfig, LLMTool, LLMType, Message, ToolsConfig, } from '../../types/llm'; import { LLMController } from '../../controllers/LLMController'; /* Hook version of LLMModule */ export const useLLM = ({ model, preventLoad = false, }: { model: { modelSource: ResourceSource; tokenizerSource: ResourceSource; tokenizerConfigSource: ResourceSource; }; preventLoad?: boolean; }): LLMType => { const [token, setToken] = useState<string>(''); const [response, setResponse] = useState<string>(''); const [messageHistory, setMessageHistory] = useState<Message[]>([]); const [isReady, setIsReady] = useState(false); const [isGenerating, setIsGenerating] = useState(false); const [downloadProgress, setDownloadProgress] = useState(0); const [error, setError] = useState<any>(null); const tokenCallback = useCallback((newToken: string) => { setToken(newToken); setResponse((prevResponse) => prevResponse + newToken); }, []); const [controllerInstance] = useState( () => new LLMController({ tokenCallback: tokenCallback, messageHistoryCallback: setMessageHistory, isReadyCallback: setIsReady, isGeneratingCallback: setIsGenerating, }) ); useEffect(() => { setDownloadProgress(0); setError(null); if (preventLoad) return; (async () => { try { await controllerInstance.load({ modelSource: model.modelSource, tokenizerSource: model.tokenizerSource, tokenizerConfigSource: model.tokenizerConfigSource, onDownloadProgressCallback: setDownloadProgress, }); } catch (e) { setError(e); } })(); return () => { controllerInstance.delete(); }; }, [ controllerInstance, model.modelSource, model.tokenizerSource, model.tokenizerConfigSource, preventLoad, ]); // memoization of returned functions const configure = useCallback( ({ chatConfig, toolsConfig, generationConfig, }: { chatConfig?: Partial<ChatConfig>; toolsConfig?: ToolsConfig; generationConfig?: GenerationConfig; }) => controllerInstance.configure({ chatConfig, toolsConfig, generationConfig, }), [controllerInstance] ); const generate = useCallback( (messages: Message[], tools?: LLMTool[]) => { setResponse(''); return controllerInstance.generate(messages, tools); }, [controllerInstance] ); const sendMessage = useCallback( (message: string) => { setResponse(''); return controllerInstance.sendMessage(message); }, [controllerInstance] ); const deleteMessage = useCallback( (index: number) => controllerInstance.deleteMessage(index), [controllerInstance] ); const interrupt = useCallback( () => controllerInstance.interrupt(), [controllerInstance] ); const getGeneratedTokenCount = useCallback( () => controllerInstance.getGeneratedTokenCount(), [controllerInstance] ); return { messageHistory, response, token, isReady, isGenerating, downloadProgress, error, getGeneratedTokenCount: getGeneratedTokenCount, configure: configure, generate: generate, sendMessage: sendMessage, deleteMessage: deleteMessage, interrupt: interrupt, }; };