UNPKG

react-native-executorch

Version:

An easy way to run AI models in React Native with ExecuTorch

341 lines (305 loc) 10.1 kB
import { ResourceSource } from '../types/common'; import { ResourceFetcher } from '../utils/ResourceFetcher'; import { ETError, getError } from '../Error'; import { Template } from '@huggingface/jinja'; import { DEFAULT_CHAT_CONFIG } from '../constants/llmDefaults'; import { ChatConfig, GenerationConfig, LLMTool, Message, SPECIAL_TOKENS, ToolsConfig, } from '../types/llm'; import { parseToolCall } from '../utils/llm'; import { Logger } from '../common/Logger'; import { readAsStringAsync } from 'expo-file-system/legacy'; export class LLMController { private nativeModule: any; private chatConfig: ChatConfig = DEFAULT_CHAT_CONFIG; private toolsConfig: ToolsConfig | undefined; private tokenizerConfig: any; private onToken?: (token: string) => void; private _response = ''; private _isReady = false; private _isGenerating = false; private _messageHistory: Message[] = []; // User callbacks private tokenCallback: (token: string) => void; private responseCallback: (response: string) => void; private messageHistoryCallback: (messageHistory: Message[]) => void; private isReadyCallback: (isReady: boolean) => void; private isGeneratingCallback: (isGenerating: boolean) => void; constructor({ tokenCallback, responseCallback, messageHistoryCallback, isReadyCallback, isGeneratingCallback, }: { tokenCallback?: (token: string) => void; responseCallback?: (response: string) => void; messageHistoryCallback?: (messageHistory: Message[]) => void; isReadyCallback?: (isReady: boolean) => void; isGeneratingCallback?: (isGenerating: boolean) => void; }) { if (responseCallback !== undefined) { Logger.warn( 'Passing response callback is deprecated and will be removed in 0.6.0' ); } this.tokenCallback = (token) => { tokenCallback?.(token); }; this.responseCallback = (response) => { this._response = response; responseCallback?.(response); }; this.messageHistoryCallback = (messageHistory) => { this._messageHistory = messageHistory; messageHistoryCallback?.(messageHistory); }; this.isReadyCallback = (isReady) => { this._isReady = isReady; isReadyCallback?.(isReady); }; this.isGeneratingCallback = (isGenerating) => { this._isGenerating = isGenerating; isGeneratingCallback?.(isGenerating); }; } public get response() { return this._response; } public get isReady() { return this._isReady; } public get isGenerating() { return this._isGenerating; } public get messageHistory() { return this._messageHistory; } public async load({ modelSource, tokenizerSource, tokenizerConfigSource, onDownloadProgressCallback, }: { modelSource: ResourceSource; tokenizerSource: ResourceSource; tokenizerConfigSource: ResourceSource; onDownloadProgressCallback?: (downloadProgress: number) => void; }) { // reset inner state when loading new model this.responseCallback(''); this.messageHistoryCallback(this.chatConfig.initialMessageHistory); this.isGeneratingCallback(false); this.isReadyCallback(false); try { const tokenizersPromise = ResourceFetcher.fetch( undefined, tokenizerSource, tokenizerConfigSource ); const modelPromise = ResourceFetcher.fetch( onDownloadProgressCallback, modelSource ); const [tokenizersResults, modelResult] = await Promise.all([ tokenizersPromise, modelPromise, ]); const tokenizerPath = tokenizersResults?.[0]; const tokenizerConfigPath = tokenizersResults?.[1]; const modelPath = modelResult?.[0]; if (!tokenizerPath || !tokenizerConfigPath || !modelPath) { throw new Error('Download interrupted!'); } this.tokenizerConfig = JSON.parse( await readAsStringAsync('file://' + tokenizerConfigPath!) ); this.nativeModule = global.loadLLM(modelPath, tokenizerPath); this.isReadyCallback(true); this.onToken = (data: string) => { if (!data) { return; } if ( SPECIAL_TOKENS.EOS_TOKEN in this.tokenizerConfig && data.indexOf(this.tokenizerConfig.eos_token) >= 0 ) { data = data.replaceAll(this.tokenizerConfig.eos_token, ''); } if ( SPECIAL_TOKENS.PAD_TOKEN in this.tokenizerConfig && data.indexOf(this.tokenizerConfig.pad_token) >= 0 ) { data = data.replaceAll(this.tokenizerConfig.pad_token, ''); } if (data.length === 0) { return; } this.tokenCallback(data); this.responseCallback(this._response + data); }; } catch (e) { this.isReadyCallback(false); throw new Error(getError(e)); } } public setTokenCallback(tokenCallback: (token: string) => void) { this.tokenCallback = tokenCallback; } public configure({ chatConfig, toolsConfig, generationConfig, }: { chatConfig?: Partial<ChatConfig>; toolsConfig?: ToolsConfig; generationConfig?: GenerationConfig; }) { this.chatConfig = { ...DEFAULT_CHAT_CONFIG, ...chatConfig }; this.toolsConfig = toolsConfig; if (generationConfig?.outputTokenBatchSize) { this.nativeModule.setCountInterval(generationConfig.outputTokenBatchSize); } if (generationConfig?.batchTimeInterval) { this.nativeModule.setTimeInterval(generationConfig.batchTimeInterval); } if (generationConfig?.temperature) { this.nativeModule.setTemperature(generationConfig.temperature); } if (generationConfig?.topp) { if (generationConfig.topp < 0 || generationConfig.topp > 1) { throw new Error( getError(ETError.InvalidConfig) + 'TopP has to be in range [0, 1].' ); } this.nativeModule.setTopp(generationConfig.topp); } // reset inner state when loading new configuration this.responseCallback(''); this.messageHistoryCallback(this.chatConfig.initialMessageHistory); this.isGeneratingCallback(false); } public delete() { if (this._isGenerating) { throw new Error( getError(ETError.ModelGenerating) + 'You cannot delete the model now. You need to interrupt first.' ); } this.onToken = () => {}; this.nativeModule.unload(); this.isReadyCallback(false); this.isGeneratingCallback(false); } public async forward(input: string) { if (!this._isReady) { throw new Error(getError(ETError.ModuleNotLoaded)); } if (this._isGenerating) { throw new Error(getError(ETError.ModelGenerating)); } try { this.responseCallback(''); this.isGeneratingCallback(true); await this.nativeModule.generate(input, this.onToken); } catch (e) { throw new Error(getError(e)); } finally { this.isGeneratingCallback(false); } } public interrupt() { this.nativeModule.interrupt(); } public getGeneratedTokenCount(): number { return this.nativeModule.getGeneratedTokenCount(); } public async generate(messages: Message[], tools?: LLMTool[]) { if (!this._isReady) { throw new Error(getError(ETError.ModuleNotLoaded)); } if (messages.length === 0) { throw new Error(`Empty 'messages' array!`); } if (messages[0] && messages[0].role !== 'system') { Logger.warn( `You are not providing system prompt. You can pass it in the first message using { role: 'system', content: YOUR_PROMPT }. Otherwise prompt from your model's chat template will be used.` ); } const renderedChat: string = this.applyChatTemplate( messages, this.tokenizerConfig, tools, // eslint-disable-next-line camelcase { tools_in_user_message: false, add_generation_prompt: true } ); await this.forward(renderedChat); } public async sendMessage(message: string) { this.messageHistoryCallback([ ...this._messageHistory, { content: message, role: 'user' }, ]); const messageHistoryWithPrompt: Message[] = [ { content: this.chatConfig.systemPrompt, role: 'system' }, ...this._messageHistory.slice(-this.chatConfig.contextWindowLength), ]; await this.generate(messageHistoryWithPrompt, this.toolsConfig?.tools); if (!this.toolsConfig || this.toolsConfig.displayToolCalls) { this.messageHistoryCallback([ ...this._messageHistory, { content: this._response, role: 'assistant' }, ]); } if (!this.toolsConfig) { return; } const toolCalls = parseToolCall(this._response); for (const toolCall of toolCalls) { this.toolsConfig .executeToolCallback(toolCall) .then((toolResponse: string | null) => { if (toolResponse) { this.messageHistoryCallback([ ...this._messageHistory, { content: toolResponse, role: 'assistant' }, ]); } }); } } public deleteMessage(index: number) { // we delete referenced message and all messages after it // so the model responses that used them are deleted as well const newMessageHistory = this._messageHistory.slice(0, index); this.messageHistoryCallback(newMessageHistory); } private applyChatTemplate( messages: Message[], tokenizerConfig: any, tools?: LLMTool[], templateFlags?: Object ): string { if (!tokenizerConfig.chat_template) { throw Error("Tokenizer config doesn't include chat_template"); } const template = new Template(tokenizerConfig.chat_template); const specialTokens = Object.fromEntries( Object.values(SPECIAL_TOKENS) .filter((key) => key in tokenizerConfig) .map((key) => [key, tokenizerConfig[key]]) ); const result = template.render({ messages, tools, ...templateFlags, ...specialTokens, }); return result; } }