react-native-executorch
Version:
An easy way to run AI models in react native with ExecuTorch
62 lines (55 loc) • 1.88 kB
text/typescript
import { useEffect, useState } from 'react';
import { TokenizerModule } from '../../modules/natural_language_processing/TokenizerModule';
import { ResourceSource } from '../../types/common';
import { ETError, getError } from '../../Error';
export const useTokenizer = ({
tokenizerSource,
preventLoad = false,
}: {
tokenizerSource: ResourceSource;
preventLoad?: boolean;
}) => {
const [error, setError] = useState<null | string>(null);
const [isReady, setIsReady] = useState(false);
const [isGenerating, setIsGenerating] = useState(false);
const [downloadProgress, setDownloadProgress] = useState(0);
useEffect(() => {
const loadModule = async () => {
try {
setIsReady(false);
TokenizerModule.onDownloadProgress(setDownloadProgress);
await TokenizerModule.load(tokenizerSource);
setIsReady(true);
} catch (err) {
setError((err as Error).message);
}
};
if (!preventLoad) {
loadModule();
}
}, [tokenizerSource, preventLoad]);
const stateWrapper = <T extends (...args: any[]) => Promise<any>>(fn: T) => {
const boundFn = fn.bind(TokenizerModule);
return async (...args: Parameters<T>): Promise<ReturnType<T>> => {
if (!isReady) throw new Error(getError(ETError.ModuleNotLoaded));
if (isGenerating) throw new Error(getError(ETError.ModelGenerating));
setIsGenerating(true);
try {
return await boundFn(...args);
} finally {
setIsGenerating(false);
}
};
};
return {
error,
isReady,
isGenerating,
downloadProgress,
decode: stateWrapper(TokenizerModule.decode),
encode: stateWrapper(TokenizerModule.encode),
getVocabSize: stateWrapper(TokenizerModule.getVocabSize),
idToToken: stateWrapper(TokenizerModule.idToToken),
tokenToId: stateWrapper(TokenizerModule.tokenToId),
};
};