UNPKG

react-native-caffe2

Version:

### Bring deep learning to mobile in 2 minutes 📱🥂

58 lines (42 loc) • 2 kB
# pthreadpool [![BSD (2 clause) License](https://img.shields.io/badge/License-BSD%202--Clause%20%22Simplified%22%20License-blue.svg)](https://github.com/Maratyszcza/pthreadpool/blob/master/LICENSE) [![Build Status](https://img.shields.io/travis/Maratyszcza/pthreadpool.svg)](https://travis-ci.org/Maratyszcza/pthreadpool) **pthreadpool** is a pthread-based thread pool implementation. Is is intended to provide functionality of `#pragma omp parallel for` for POSIX systems where OpenMP is not available. ## Features: * C interface (C++-compatible). * Run on user-specified or auto-detected number of threads. * Work-stealing scheduling for efficient work balancing. * Compatible with Linux, macOS, and Native Client environments. * Covered with unit tests and microbenchmarks. ## Example The following example demonstates using the thread pool for parallel addition of two arrays: ```c static void add_arrays(struct array_addition_context* context, size_t i) { context->sum[i] = context->augend[i] + context->addend[i]; } #define ARRAY_SIZE 4 int main() { double augend[ARRAY_SIZE] = { 1.0, 2.0, 4.0, -5.0 }; double addend[ARRAY_SIZE] = { 0.25, -1.75, 0.0, 0.5 }; double sum[ARRAY_SIZE]; pthreadpool_t threadpool = pthreadpool_create(0); assert(threadpool != NULL); const size_t threads_count = pthreadpool_get_threads_count(threadpool); printf("Created thread pool with %zu threads\n", threads_count); struct array_addition_context context = { augend, addend, sum }; pthreadpool_compute_1d(threadpool, (pthreadpool_function_1d_t) add_arrays, (void**) &context, ARRAY_SIZE); pthreadpool_destroy(threadpool); threadpool = NULL; printf("%8s\t%.2lf\t%.2lf\t%.2lf\t%.2lf\n", "Augend", augend[0], augend[1], augend[2], augend[3]); printf("%8s\t%.2lf\t%.2lf\t%.2lf\t%.2lf\n", "Addend", addend[0], addend[1], addend[2], addend[3]); printf("%8s\t%.2lf\t%.2lf\t%.2lf\t%.2lf\n", "Sum", sum[0], sum[1], sum[2], sum[3]); return 0; } ```