react-image-publisher
Version:
A common blockchain React component for publishing images with Bitstore and Open Publish
2,108 lines (1,883 loc) • 9.27 MB
JavaScript
(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){
'use strict';
var React = require('react');
var ImagePublisher = require('../src');
var NoBalance = require('./no-balance');
var commonBlockchain = require('blockcypher-unofficial')({
network: 'testnet',
inBrowser: true
});
var faucet = require('common-faucet');
var faucetClient = faucet({
network: 'testnet',
commonBlockchain: commonBlockchain,
inBrowser: true
});
var seed = 'test';
if (window.location.search.split('?seed=') && window.location.search.split('?seed=')[1]) {
seed = window.location.search.split('?seed=')[1];
}
var testCommonWallet = require('test-common-wallet');
var commonWallet = testCommonWallet({
seed: seed,
network: 'testnet',
commonBlockchain: commonBlockchain
});
// faucetClient.Get({
// faucetURL: "http://blockai-faucet.herokuapp.com/",
// address: commonWallet.address
// }, function(err, receipt) {
// console.log(err, receipt);
// });
commonBlockchain.Addresses.Summary([commonWallet.address], function (err, adrs) {
var balance = adrs && adrs[0] ? adrs[0].balance : 0;
React.render(React.createElement(ImagePublisher, { balance: balance, NoBalance: NoBalance, commonBlockchain: commonBlockchain, commonWallet: commonWallet }), document.getElementById('example'));
});
},{"../src":892,"./no-balance":2,"blockcypher-unofficial":107,"common-faucet":114,"react":487,"test-common-wallet":592}],2:[function(require,module,exports){
'use strict';
var React = require('react');
var NoBalance = React.createClass({
displayName: 'NoBalance',
render: function render() {
var address = this.props.address;
var intentMessage = this.props.intentMessage;
var tweetUrlBase = 'https://twitter.com/intent/tweet';
tweetUrlBase += '?text=' + encodeURIComponent('My wallet, ' + address + ', needs some funds ' + intentMessage + '!');
tweetUrlBase += '&hashtags=needbitcoin';
//tweetUrlBase += '&url=' + encodeURIComponent('https://www.blockai.com/address/' + address);
return React.createElement(
'div',
{ className: 'no-balance' },
React.createElement(
'h4',
null,
'Uh oh, you don\'t have any Bitcoin!'
),
React.createElement(
'p',
null,
'If you\'d like ',
intentMessage,
' you\'re going need to get some Bitcoin.'
),
React.createElement(
'p',
null,
'If you or someone you know does have Bitcoin, send some to this address: ',
React.createElement(
'a',
{ href: 'bitcoin:' + address },
address
)
),
React.createElement(
'p',
null,
'If not, don\'t worry, there\'s a lot of people ready to give out a few cents worth to get new people involved!'
),
React.createElement(
'p',
null,
'Sometimes ',
React.createElement(
'strong',
null,
'it can take a few minutes'
),
' for the Bitcoin network to register a transaciton and update your balance. Please be patient!'
),
React.createElement(
'p',
null,
React.createElement(
'a',
{ href: tweetUrlBase, className: 'btn btn-primary' },
'Ask on Twitter for Bitcoin'
)
)
);
}
});
module.exports = NoBalance;
},{"react":487}],3:[function(require,module,exports){
var bitcoin = require('bitcoinjs-lib');
var txHexToJSON = function(hex) {
var tx = bitcoin.Transaction.fromHex(hex);
var txid = tx.getId();
var vin = [];
tx.ins.forEach(function(input) {
var input_txid = bitcoin.bufferutils.reverse(input.hash).toString("hex");
vin.push({
txid: input_txid,
txId: input_txid,
vout: input.index,
scriptSig: {
hex: input.script.buffer.toString("hex")
},
sequence: input.sequence,
addresses: ["msLoJikUfxbc2U5UhRSjc2svusBSqMdqxZ"]
});
});
var vout = [];
tx.outs.forEach(function(output, index) {
var script_type = bitcoin.scripts.classifyOutput(output.script);
var address = script_type == "pubkeyhash" || script_type == "scripthash" ? bitcoin.Address.fromOutputScript(output.script, bitcoin.networks.testnet).toString() : null;
vout.push({
value: output.value,
index: index,
n: index,
scriptPubKey: {
hex: output.script.buffer.toString("hex"),
asm: output.script.toASM(),
type: script_type,
addresses: [address]
}
});
});
return {
confirmations: null,
blockheight: null,
blocktime: null,
blockhash: null,
timeReceived: new Date().getTime(),
txHex: hex,
hex: hex,
txid: txid,
txId: txid,
version: tx.version,
locktime: tx.locktime,
vin: vin,
vout: vout
}
};
module.exports = txHexToJSON;
},{"bitcoinjs-lib":41}],4:[function(require,module,exports){
// (public) Constructor
function BigInteger(a, b, c) {
if (!(this instanceof BigInteger))
return new BigInteger(a, b, c)
if (a != null) {
if ("number" == typeof a) this.fromNumber(a, b, c)
else if (b == null && "string" != typeof a) this.fromString(a, 256)
else this.fromString(a, b)
}
}
var proto = BigInteger.prototype
// duck-typed isBigInteger
proto.__bigi = require('../package.json').version
BigInteger.isBigInteger = function (obj, check_ver) {
return obj && obj.__bigi && (!check_ver || obj.__bigi === proto.__bigi)
}
// Bits per digit
var dbits
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c
c = Math.floor(v / 0x4000000)
w[j++] = v & 0x3ffffff
}
return c
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15
while (--n >= 0) {
var l = this[i] & 0x7fff
var h = this[i++] >> 15
var m = xh * l + h * xl
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff)
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30)
w[j++] = l & 0x3fffffff
}
return c
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14
while (--n >= 0) {
var l = this[i] & 0x3fff
var h = this[i++] >> 14
var m = xh * l + h * xl
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c
c = (l >> 28) + (m >> 14) + xh * h
w[j++] = l & 0xfffffff
}
return c
}
// wtf?
BigInteger.prototype.am = am1
dbits = 26
BigInteger.prototype.DB = dbits
BigInteger.prototype.DM = ((1 << dbits) - 1)
var DV = BigInteger.prototype.DV = (1 << dbits)
var BI_FP = 52
BigInteger.prototype.FV = Math.pow(2, BI_FP)
BigInteger.prototype.F1 = BI_FP - dbits
BigInteger.prototype.F2 = 2 * dbits - BI_FP
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"
var BI_RC = new Array()
var rr, vv
rr = "0".charCodeAt(0)
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv
rr = "a".charCodeAt(0)
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv
rr = "A".charCodeAt(0)
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv
function int2char(n) {
return BI_RM.charAt(n)
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)]
return (c == null) ? -1 : c
}
// (protected) copy this to r
function bnpCopyTo(r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i]
r.t = this.t
r.s = this.s
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1
this.s = (x < 0) ? -1 : 0
if (x > 0) this[0] = x
else if (x < -1) this[0] = x + DV
else this.t = 0
}
// return bigint initialized to value
function nbv(i) {
var r = new BigInteger()
r.fromInt(i)
return r
}
// (protected) set from string and radix
function bnpFromString(s, b) {
var self = this
var k
if (b == 16) k = 4
else if (b == 8) k = 3
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1
else if (b == 32) k = 5
else if (b == 4) k = 2
else {
self.fromRadix(s, b)
return
}
self.t = 0
self.s = 0
var i = s.length,
mi = false,
sh = 0
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i)
if (x < 0) {
if (s.charAt(i) == "-") mi = true
continue
}
mi = false
if (sh == 0)
self[self.t++] = x
else if (sh + k > self.DB) {
self[self.t - 1] |= (x & ((1 << (self.DB - sh)) - 1)) << sh
self[self.t++] = (x >> (self.DB - sh))
} else
self[self.t - 1] |= x << sh
sh += k
if (sh >= self.DB) sh -= self.DB
}
if (k == 8 && (s[0] & 0x80) != 0) {
self.s = -1
if (sh > 0) self[self.t - 1] |= ((1 << (self.DB - sh)) - 1) << sh
}
self.clamp()
if (mi) BigInteger.ZERO.subTo(self, self)
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s & this.DM
while (this.t > 0 && this[this.t - 1] == c)--this.t
}
// (public) return string representation in given radix
function bnToString(b) {
var self = this
if (self.s < 0) return "-" + self.negate()
.toString(b)
var k
if (b == 16) k = 4
else if (b == 8) k = 3
else if (b == 2) k = 1
else if (b == 32) k = 5
else if (b == 4) k = 2
else return self.toRadix(b)
var km = (1 << k) - 1,
d, m = false,
r = "",
i = self.t
var p = self.DB - (i * self.DB) % k
if (i-- > 0) {
if (p < self.DB && (d = self[i] >> p) > 0) {
m = true
r = int2char(d)
}
while (i >= 0) {
if (p < k) {
d = (self[i] & ((1 << p) - 1)) << (k - p)
d |= self[--i] >> (p += self.DB - k)
} else {
d = (self[i] >> (p -= k)) & km
if (p <= 0) {
p += self.DB
--i
}
}
if (d > 0) m = true
if (m) r += int2char(d)
}
}
return m ? r : "0"
}
// (public) -this
function bnNegate() {
var r = new BigInteger()
BigInteger.ZERO.subTo(this, r)
return r
}
// (public) |this|
function bnAbs() {
return (this.s < 0) ? this.negate() : this
}
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s - a.s
if (r != 0) return r
var i = this.t
r = i - a.t
if (r != 0) return (this.s < 0) ? -r : r
while (--i >= 0)
if ((r = this[i] - a[i]) != 0) return r
return 0
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t
if ((t = x >>> 16) != 0) {
x = t
r += 16
}
if ((t = x >> 8) != 0) {
x = t
r += 8
}
if ((t = x >> 4) != 0) {
x = t
r += 4
}
if ((t = x >> 2) != 0) {
x = t
r += 2
}
if ((t = x >> 1) != 0) {
x = t
r += 1
}
return r
}
// (public) return the number of bits in "this"
function bnBitLength() {
if (this.t <= 0) return 0
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM))
}
// (public) return the number of bytes in "this"
function bnByteLength() {
return this.bitLength() >> 3
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n, r) {
var i
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i]
for (i = n - 1; i >= 0; --i) r[i] = 0
r.t = this.t + n
r.s = this.s
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i]
r.t = Math.max(this.t - n, 0)
r.s = this.s
}
// (protected) r = this << n
function bnpLShiftTo(n, r) {
var self = this
var bs = n % self.DB
var cbs = self.DB - bs
var bm = (1 << cbs) - 1
var ds = Math.floor(n / self.DB),
c = (self.s << bs) & self.DM,
i
for (i = self.t - 1; i >= 0; --i) {
r[i + ds + 1] = (self[i] >> cbs) | c
c = (self[i] & bm) << bs
}
for (i = ds - 1; i >= 0; --i) r[i] = 0
r[ds] = c
r.t = self.t + ds + 1
r.s = self.s
r.clamp()
}
// (protected) r = this >> n
function bnpRShiftTo(n, r) {
var self = this
r.s = self.s
var ds = Math.floor(n / self.DB)
if (ds >= self.t) {
r.t = 0
return
}
var bs = n % self.DB
var cbs = self.DB - bs
var bm = (1 << bs) - 1
r[0] = self[ds] >> bs
for (var i = ds + 1; i < self.t; ++i) {
r[i - ds - 1] |= (self[i] & bm) << cbs
r[i - ds] = self[i] >> bs
}
if (bs > 0) r[self.t - ds - 1] |= (self.s & bm) << cbs
r.t = self.t - ds
r.clamp()
}
// (protected) r = this - a
function bnpSubTo(a, r) {
var self = this
var i = 0,
c = 0,
m = Math.min(a.t, self.t)
while (i < m) {
c += self[i] - a[i]
r[i++] = c & self.DM
c >>= self.DB
}
if (a.t < self.t) {
c -= a.s
while (i < self.t) {
c += self[i]
r[i++] = c & self.DM
c >>= self.DB
}
c += self.s
} else {
c += self.s
while (i < a.t) {
c -= a[i]
r[i++] = c & self.DM
c >>= self.DB
}
c -= a.s
}
r.s = (c < 0) ? -1 : 0
if (c < -1) r[i++] = self.DV + c
else if (c > 0) r[i++] = c
r.t = i
r.clamp()
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a, r) {
var x = this.abs(),
y = a.abs()
var i = x.t
r.t = i + y.t
while (--i >= 0) r[i] = 0
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t)
r.s = 0
r.clamp()
if (this.s != a.s) BigInteger.ZERO.subTo(r, r)
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs()
var i = r.t = 2 * x.t
while (--i >= 0) r[i] = 0
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1)
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV
r[i + x.t + 1] = 1
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1)
r.s = 0
r.clamp()
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m, q, r) {
var self = this
var pm = m.abs()
if (pm.t <= 0) return
var pt = self.abs()
if (pt.t < pm.t) {
if (q != null) q.fromInt(0)
if (r != null) self.copyTo(r)
return
}
if (r == null) r = new BigInteger()
var y = new BigInteger(),
ts = self.s,
ms = m.s
var nsh = self.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y)
pt.lShiftTo(nsh, r)
} else {
pm.copyTo(y)
pt.copyTo(r)
}
var ys = y.t
var y0 = y[ys - 1]
if (y0 == 0) return
var yt = y0 * (1 << self.F1) + ((ys > 1) ? y[ys - 2] >> self.F2 : 0)
var d1 = self.FV / yt,
d2 = (1 << self.F1) / yt,
e = 1 << self.F2
var i = r.t,
j = i - ys,
t = (q == null) ? new BigInteger() : q
y.dlShiftTo(j, t)
if (r.compareTo(t) >= 0) {
r[r.t++] = 1
r.subTo(t, r)
}
BigInteger.ONE.dlShiftTo(ys, t)
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? self.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2)
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t)
r.subTo(t, r)
while (r[i] < --qd) r.subTo(t, r)
}
}
if (q != null) {
r.drShiftTo(ys, q)
if (ts != ms) BigInteger.ZERO.subTo(q, q)
}
r.t = ys
r.clamp()
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r)
}
// (public) this mod a
function bnMod(a) {
var r = new BigInteger()
this.abs()
.divRemTo(a, null, r)
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r)
return r
}
// Modular reduction using "classic" algorithm
function Classic(m) {
this.m = m
}
function cConvert(x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m)
else return x
}
function cRevert(x) {
return x
}
function cReduce(x) {
x.divRemTo(this.m, null, x)
}
function cMulTo(x, y, r) {
x.multiplyTo(y, r)
this.reduce(r)
}
function cSqrTo(x, r) {
x.squareTo(r)
this.reduce(r)
}
Classic.prototype.convert = cConvert
Classic.prototype.revert = cRevert
Classic.prototype.reduce = cReduce
Classic.prototype.mulTo = cMulTo
Classic.prototype.sqrTo = cSqrTo
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if (this.t < 1) return 0
var x = this[0]
if ((x & 1) == 0) return 0
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y
}
// Montgomery reduction
function Montgomery(m) {
this.m = m
this.mp = m.invDigit()
this.mpl = this.mp & 0x7fff
this.mph = this.mp >> 15
this.um = (1 << (m.DB - 15)) - 1
this.mt2 = 2 * m.t
}
// xR mod m
function montConvert(x) {
var r = new BigInteger()
x.abs()
.dlShiftTo(this.m.t, r)
r.divRemTo(this.m, null, r)
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r)
return r
}
// x/R mod m
function montRevert(x) {
var r = new BigInteger()
x.copyTo(r)
this.reduce(r)
return r
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM
// use am to combine the multiply-shift-add into one call
j = i + this.m.t
x[j] += this.m.am(0, u0, x, i, 0, this.m.t)
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV
x[++j]++
}
}
x.clamp()
x.drShiftTo(this.m.t, x)
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x)
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x, r) {
x.squareTo(r)
this.reduce(r)
}
// r = "xy/R mod m"; x,y != r
function montMulTo(x, y, r) {
x.multiplyTo(y, r)
this.reduce(r)
}
Montgomery.prototype.convert = montConvert
Montgomery.prototype.revert = montRevert
Montgomery.prototype.reduce = montReduce
Montgomery.prototype.mulTo = montMulTo
Montgomery.prototype.sqrTo = montSqrTo
// (protected) true iff this is even
function bnpIsEven() {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0
}
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE
var r = new BigInteger(),
r2 = new BigInteger(),
g = z.convert(this),
i = nbits(e) - 1
g.copyTo(r)
while (--i >= 0) {
z.sqrTo(r, r2)
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r)
else {
var t = r
r = r2
r2 = t
}
}
return z.revert(r)
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e, m) {
var z
if (e < 256 || m.isEven()) z = new Classic(m)
else z = new Montgomery(m)
return this.exp(e, z)
}
// protected
proto.copyTo = bnpCopyTo
proto.fromInt = bnpFromInt
proto.fromString = bnpFromString
proto.clamp = bnpClamp
proto.dlShiftTo = bnpDLShiftTo
proto.drShiftTo = bnpDRShiftTo
proto.lShiftTo = bnpLShiftTo
proto.rShiftTo = bnpRShiftTo
proto.subTo = bnpSubTo
proto.multiplyTo = bnpMultiplyTo
proto.squareTo = bnpSquareTo
proto.divRemTo = bnpDivRemTo
proto.invDigit = bnpInvDigit
proto.isEven = bnpIsEven
proto.exp = bnpExp
// public
proto.toString = bnToString
proto.negate = bnNegate
proto.abs = bnAbs
proto.compareTo = bnCompareTo
proto.bitLength = bnBitLength
proto.byteLength = bnByteLength
proto.mod = bnMod
proto.modPowInt = bnModPowInt
// (public)
function bnClone() {
var r = new BigInteger()
this.copyTo(r)
return r
}
// (public) return value as integer
function bnIntValue() {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV
else if (this.t == 0) return -1
} else if (this.t == 1) return this[0]
else if (this.t == 0) return 0
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0]
}
// (public) return value as byte
function bnByteValue() {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24
}
// (public) return value as short (assumes DB>=16)
function bnShortValue() {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16
}
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r))
}
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if (this.s < 0) return -1
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0
else return 1
}
// (protected) convert to radix string
function bnpToRadix(b) {
if (b == null) b = 10
if (this.signum() == 0 || b < 2 || b > 36) return "0"
var cs = this.chunkSize(b)
var a = Math.pow(b, cs)
var d = nbv(a),
y = new BigInteger(),
z = new BigInteger(),
r = ""
this.divRemTo(d, y, z)
while (y.signum() > 0) {
r = (a + z.intValue())
.toString(b)
.substr(1) + r
y.divRemTo(d, y, z)
}
return z.intValue()
.toString(b) + r
}
// (protected) convert from radix string
function bnpFromRadix(s, b) {
var self = this
self.fromInt(0)
if (b == null) b = 10
var cs = self.chunkSize(b)
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i)
if (x < 0) {
if (s.charAt(i) == "-" && self.signum() == 0) mi = true
continue
}
w = b * w + x
if (++j >= cs) {
self.dMultiply(d)
self.dAddOffset(w, 0)
j = 0
w = 0
}
}
if (j > 0) {
self.dMultiply(Math.pow(b, j))
self.dAddOffset(w, 0)
}
if (mi) BigInteger.ZERO.subTo(self, self)
}
// (protected) alternate constructor
function bnpFromNumber(a, b, c) {
var self = this
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) self.fromInt(1)
else {
self.fromNumber(a, c)
if (!self.testBit(a - 1)) // force MSB set
self.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, self)
if (self.isEven()) self.dAddOffset(1, 0); // force odd
while (!self.isProbablePrime(b)) {
self.dAddOffset(2, 0)
if (self.bitLength() > a) self.subTo(BigInteger.ONE.shiftLeft(a - 1), self)
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7
x.length = (a >> 3) + 1
b.nextBytes(x)
if (t > 0) x[0] &= ((1 << t) - 1)
else x[0] = 0
self.fromString(x, 256)
}
}
// (public) convert to bigendian byte array
function bnToByteArray() {
var self = this
var i = self.t,
r = new Array()
r[0] = self.s
var p = self.DB - (i * self.DB) % 8,
d, k = 0
if (i-- > 0) {
if (p < self.DB && (d = self[i] >> p) != (self.s & self.DM) >> p)
r[k++] = d | (self.s << (self.DB - p))
while (i >= 0) {
if (p < 8) {
d = (self[i] & ((1 << p) - 1)) << (8 - p)
d |= self[--i] >> (p += self.DB - 8)
} else {
d = (self[i] >> (p -= 8)) & 0xff
if (p <= 0) {
p += self.DB
--i
}
}
if ((d & 0x80) != 0) d |= -256
if (k === 0 && (self.s & 0x80) != (d & 0x80))++k
if (k > 0 || d != self.s) r[k++] = d
}
}
return r
}
function bnEquals(a) {
return (this.compareTo(a) == 0)
}
function bnMin(a) {
return (this.compareTo(a) < 0) ? this : a
}
function bnMax(a) {
return (this.compareTo(a) > 0) ? this : a
}
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a, op, r) {
var self = this
var i, f, m = Math.min(a.t, self.t)
for (i = 0; i < m; ++i) r[i] = op(self[i], a[i])
if (a.t < self.t) {
f = a.s & self.DM
for (i = m; i < self.t; ++i) r[i] = op(self[i], f)
r.t = self.t
} else {
f = self.s & self.DM
for (i = m; i < a.t; ++i) r[i] = op(f, a[i])
r.t = a.t
}
r.s = op(self.s, a.s)
r.clamp()
}
// (public) this & a
function op_and(x, y) {
return x & y
}
function bnAnd(a) {
var r = new BigInteger()
this.bitwiseTo(a, op_and, r)
return r
}
// (public) this | a
function op_or(x, y) {
return x | y
}
function bnOr(a) {
var r = new BigInteger()
this.bitwiseTo(a, op_or, r)
return r
}
// (public) this ^ a
function op_xor(x, y) {
return x ^ y
}
function bnXor(a) {
var r = new BigInteger()
this.bitwiseTo(a, op_xor, r)
return r
}
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y
}
function bnAndNot(a) {
var r = new BigInteger()
this.bitwiseTo(a, op_andnot, r)
return r
}
// (public) ~this
function bnNot() {
var r = new BigInteger()
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i]
r.t = this.t
r.s = ~this.s
return r
}
// (public) this << n
function bnShiftLeft(n) {
var r = new BigInteger()
if (n < 0) this.rShiftTo(-n, r)
else this.lShiftTo(n, r)
return r
}
// (public) this >> n
function bnShiftRight(n) {
var r = new BigInteger()
if (n < 0) this.lShiftTo(-n, r)
else this.rShiftTo(n, r)
return r
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1
var r = 0
if ((x & 0xffff) == 0) {
x >>= 16
r += 16
}
if ((x & 0xff) == 0) {
x >>= 8
r += 8
}
if ((x & 0xf) == 0) {
x >>= 4
r += 4
}
if ((x & 3) == 0) {
x >>= 2
r += 2
}
if ((x & 1) == 0)++r
return r
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i])
if (this.s < 0) return this.t * this.DB
return -1
}
// return number of 1 bits in x
function cbit(x) {
var r = 0
while (x != 0) {
x &= x - 1
++r
}
return r
}
// (public) return number of set bits
function bnBitCount() {
var r = 0,
x = this.s & this.DM
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x)
return r
}
// (public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n / this.DB)
if (j >= this.t) return (this.s != 0)
return ((this[j] & (1 << (n % this.DB))) != 0)
}
// (protected) this op (1<<n)
function bnpChangeBit(n, op) {
var r = BigInteger.ONE.shiftLeft(n)
this.bitwiseTo(r, op, r)
return r
}
// (public) this | (1<<n)
function bnSetBit(n) {
return this.changeBit(n, op_or)
}
// (public) this & ~(1<<n)
function bnClearBit(n) {
return this.changeBit(n, op_andnot)
}
// (public) this ^ (1<<n)
function bnFlipBit(n) {
return this.changeBit(n, op_xor)
}
// (protected) r = this + a
function bnpAddTo(a, r) {
var self = this
var i = 0,
c = 0,
m = Math.min(a.t, self.t)
while (i < m) {
c += self[i] + a[i]
r[i++] = c & self.DM
c >>= self.DB
}
if (a.t < self.t) {
c += a.s
while (i < self.t) {
c += self[i]
r[i++] = c & self.DM
c >>= self.DB
}
c += self.s
} else {
c += self.s
while (i < a.t) {
c += a[i]
r[i++] = c & self.DM
c >>= self.DB
}
c += a.s
}
r.s = (c < 0) ? -1 : 0
if (c > 0) r[i++] = c
else if (c < -1) r[i++] = self.DV + c
r.t = i
r.clamp()
}
// (public) this + a
function bnAdd(a) {
var r = new BigInteger()
this.addTo(a, r)
return r
}
// (public) this - a
function bnSubtract(a) {
var r = new BigInteger()
this.subTo(a, r)
return r
}
// (public) this * a
function bnMultiply(a) {
var r = new BigInteger()
this.multiplyTo(a, r)
return r
}
// (public) this^2
function bnSquare() {
var r = new BigInteger()
this.squareTo(r)
return r
}
// (public) this / a
function bnDivide(a) {
var r = new BigInteger()
this.divRemTo(a, r, null)
return r
}
// (public) this % a
function bnRemainder(a) {
var r = new BigInteger()
this.divRemTo(a, null, r)
return r
}
// (public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = new BigInteger(),
r = new BigInteger()
this.divRemTo(a, q, r)
return new Array(q, r)
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t)
++this.t
this.clamp()
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n, w) {
if (n == 0) return
while (this.t <= w) this[this.t++] = 0
this[w] += n
while (this[w] >= this.DV) {
this[w] -= this.DV
if (++w >= this.t) this[this.t++] = 0
++this[w]
}
}
// A "null" reducer
function NullExp() {}
function nNop(x) {
return x
}
function nMulTo(x, y, r) {
x.multiplyTo(y, r)
}
function nSqrTo(x, r) {
x.squareTo(r)
}
NullExp.prototype.convert = nNop
NullExp.prototype.revert = nNop
NullExp.prototype.mulTo = nMulTo
NullExp.prototype.sqrTo = nSqrTo
// (public) this^e
function bnPow(e) {
return this.exp(e, new NullExp())
}
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a, n, r) {
var i = Math.min(this.t + a.t, n)
r.s = 0; // assumes a,this >= 0
r.t = i
while (i > 0) r[--i] = 0
var j
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t)
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i)
r.clamp()
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a, n, r) {
--n
var i = r.t = this.t + a.t - n
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n)
r.clamp()
r.drShiftTo(1, r)
}
// Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = new BigInteger()
this.q3 = new BigInteger()
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2)
this.mu = this.r2.divide(m)
this.m = m
}
function barrettConvert(x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m)
else if (x.compareTo(this.m) < 0) return x
else {
var r = new BigInteger()
x.copyTo(r)
this.reduce(r)
return r
}
}
function barrettRevert(x) {
return x
}
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
var self = this
x.drShiftTo(self.m.t - 1, self.r2)
if (x.t > self.m.t + 1) {
x.t = self.m.t + 1
x.clamp()
}
self.mu.multiplyUpperTo(self.r2, self.m.t + 1, self.q3)
self.m.multiplyLowerTo(self.q3, self.m.t + 1, self.r2)
while (x.compareTo(self.r2) < 0) x.dAddOffset(1, self.m.t + 1)
x.subTo(self.r2, x)
while (x.compareTo(self.m) >= 0) x.subTo(self.m, x)
}
// r = x^2 mod m; x != r
function barrettSqrTo(x, r) {
x.squareTo(r)
this.reduce(r)
}
// r = x*y mod m; x,y != r
function barrettMulTo(x, y, r) {
x.multiplyTo(y, r)
this.reduce(r)
}
Barrett.prototype.convert = barrettConvert
Barrett.prototype.revert = barrettRevert
Barrett.prototype.reduce = barrettReduce
Barrett.prototype.mulTo = barrettMulTo
Barrett.prototype.sqrTo = barrettSqrTo
// (public) this^e % m (HAC 14.85)
function bnModPow(e, m) {
var i = e.bitLength(),
k, r = nbv(1),
z
if (i <= 0) return r
else if (i < 18) k = 1
else if (i < 48) k = 3
else if (i < 144) k = 4
else if (i < 768) k = 5
else k = 6
if (i < 8)
z = new Classic(m)
else if (m.isEven())
z = new Barrett(m)
else
z = new Montgomery(m)
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1
g[1] = z.convert(this)
if (k > 1) {
var g2 = new BigInteger()
z.sqrTo(g[1], g2)
while (n <= km) {
g[n] = new BigInteger()
z.mulTo(g2, g[n - 2], g[n])
n += 2
}
}
var j = e.t - 1,
w, is1 = true,
r2 = new BigInteger(),
t
i = nbits(e[j]) - 1
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i)
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1)
}
n = k
while ((w & 1) == 0) {
w >>= 1
--n
}
if ((i -= n) < 0) {
i += this.DB
--j
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r)
is1 = false
} else {
while (n > 1) {
z.sqrTo(r, r2)
z.sqrTo(r2, r)
n -= 2
}
if (n > 0) z.sqrTo(r, r2)
else {
t = r
r = r2
r2 = t
}
z.mulTo(r2, g[w], r)
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2)
t = r
r = r2
r2 = t
if (--i < 0) {
i = this.DB - 1
--j
}
}
}
return z.revert(r)
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s < 0) ? this.negate() : this.clone()
var y = (a.s < 0) ? a.negate() : a.clone()
if (x.compareTo(y) < 0) {
var t = x
x = y
y = t
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit()
if (g < 0) return x
if (i < g) g = i
if (g > 0) {
x.rShiftTo(g, x)
y.rShiftTo(g, y)
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x)
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y)
if (x.compareTo(y) >= 0) {
x.subTo(y, x)
x.rShiftTo(1, x)
} else {
y.subTo(x, y)
y.rShiftTo(1, y)
}
}
if (g > 0) y.lShiftTo(g, y)
return y
}
// (protected) this % n, n < 2^26
function bnpModInt(n) {
if (n <= 0) return 0
var d = this.DV % n,
r = (this.s < 0) ? n - 1 : 0
if (this.t > 0)
if (d == 0) r = this[0] % n
else
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n
return r
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven()
if (this.signum() === 0) throw new Error('division by zero')
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO
var u = m.clone(),
v = this.clone()
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1)
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u)
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a)
b.subTo(m, b)
}
a.rShiftTo(1, a)
} else if (!b.isEven()) b.subTo(m, b)
b.rShiftTo(1, b)
}
while (v.isEven()) {
v.rShiftTo(1, v)
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c)
d.subTo(m, d)
}
c.rShiftTo(1, c)
} else if (!d.isEven()) d.subTo(m, d)
d.rShiftTo(1, d)
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u)
if (ac) a.subTo(c, a)
b.subTo(d, b)
} else {
v.subTo(u, v)
if (ac) c.subTo(a, c)
d.subTo(b, d)
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO
if (d.compareTo(m) >= 0) return d.subtract(m)
if (d.signum() < 0) d.addTo(m, d)
else return d
if (d.signum() < 0) return d.add(m)
else return d
}
var lowprimes = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997
]
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1]
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i, x = this.abs()
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true
return false
}
if (x.isEven()) return false
i = 1
while (i < lowprimes.length) {
var m = lowprimes[i],
j = i + 1
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++]
m = x.modInt(m)
while (i < j) if (m % lowprimes[i++] == 0) return false
}
return x.millerRabin(t)
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger.ONE)
var k = n1.getLowestSetBit()
if (k <= 0) return false
var r = n1.shiftRight(k)
t = (t + 1) >> 1
if (t > lowprimes.length) t = lowprimes.length
var a = new BigInteger(null)
var j, bases = []
for (var i = 0; i < t; ++i) {
for (;;) {
j = lowprimes[Math.floor(Math.random() * lowprimes.length)]
if (bases.indexOf(j) == -1) break
}
bases.push(j)
a.fromInt(j)
var y = a.modPow(r, this)
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this)
if (y.compareTo(BigInteger.ONE) == 0) return false
}
if (y.compareTo(n1) != 0) return false
}
}
return true
}
// protected
proto.chunkSize = bnpChunkSize
proto.toRadix = bnpToRadix
proto.fromRadix = bnpFromRadix
proto.fromNumber = bnpFromNumber
proto.bitwiseTo = bnpBitwiseTo
proto.changeBit = bnpChangeBit
proto.addTo = bnpAddTo
proto.dMultiply = bnpDMultiply
proto.dAddOffset = bnpDAddOffset
proto.multiplyLowerTo = bnpMultiplyLowerTo
proto.multiplyUpperTo = bnpMultiplyUpperTo
proto.modInt = bnpModInt
proto.millerRabin = bnpMillerRabin
// public
proto.clone = bnClone
proto.intValue = bnIntValue
proto.byteValue = bnByteValue
proto.shortValue = bnShortValue
proto.signum = bnSigNum
proto.toByteArray = bnToByteArray
proto.equals = bnEquals
proto.min = bnMin
proto.max = bnMax
proto.and = bnAnd
proto.or = bnOr
proto.xor = bnXor
proto.andNot = bnAndNot
proto.not = bnNot
proto.shiftLeft = bnShiftLeft
proto.shiftRight = bnShiftRight
proto.getLowestSetBit = bnGetLowestSetBit
proto.bitCount = bnBitCount
proto.testBit = bnTestBit
proto.setBit = bnSetBit
proto.clearBit = bnClearBit
proto.flipBit = bnFlipBit
proto.add = bnAdd
proto.subtract = bnSubtract
proto.multiply = bnMultiply
proto.divide = bnDivide
proto.remainder = bnRemainder
proto.divideAndRemainder = bnDivideAndRemainder
proto.modPow = bnModPow
proto.modInverse = bnModInverse
proto.pow = bnPow
proto.gcd = bnGCD
proto.isProbablePrime = bnIsProbablePrime
// JSBN-specific extension
proto.square = bnSquare
// constants
BigInteger.ZERO = nbv(0)
BigInteger.ONE = nbv(1)
BigInteger.valueOf = nbv
module.exports = BigInteger
},{"../package.json":7}],5:[function(require,module,exports){
(function (Buffer){
// FIXME: Kind of a weird way to throw exceptions, consider removing
var assert = require('assert')
var BigInteger = require('./bigi')
/**
* Turns a byte array into a big integer.
*
* This function will interpret a byte array as a big integer in big
* endian notation.
*/
BigInteger.fromByteArrayUnsigned = function(byteArray) {
// BigInteger expects a DER integer conformant byte array
if (byteArray[0] & 0x80) {
return new BigInteger([0].concat(byteArray))
}
return new BigInteger(byteArray)
}
/**
* Returns a byte array representation of the big integer.
*
* This returns the absolute of the contained value in big endian
* form. A value of zero results in an empty array.
*/
BigInteger.prototype.toByteArrayUnsigned = function() {
var byteArray = this.toByteArray()
return byteArray[0] === 0 ? byteArray.slice(1) : byteArray
}
BigInteger.fromDERInteger = function(byteArray) {
return new BigInteger(byteArray)
}
/*
* Converts BigInteger to a DER integer representation.
*
* The format for this value uses the most significant bit as a sign
* bit. If the most significant bit is already set and the integer is
* positive, a 0x00 is prepended.
*
* Examples:
*
* 0 => 0x00
* 1 => 0x01
* -1 => 0xff
* 127 => 0x7f
* -127 => 0x81
* 128 => 0x0080
* -128 => 0x80
* 255 => 0x00ff
* -255 => 0xff01
* 16300 => 0x3fac
* -16300 => 0xc054
* 62300 => 0x00f35c
* -62300 => 0xff0ca4
*/
BigInteger.prototype.toDERInteger = BigInteger.prototype.toByteArray
BigInteger.fromBuffer = function(buffer) {
// BigInteger expects a DER integer conformant byte array
if (buffer[0] & 0x80) {
var byteArray = Array.prototype.slice.call(buffer)
return new BigInteger([0].concat(byteArray))
}
return new BigInteger(buffer)
}
BigInteger.fromHex = function(hex) {
if (hex === '') return BigInteger.ZERO
assert.equal(hex, hex.match(/^[A-Fa-f0-9]+/), 'Invalid hex string')
assert.equal(hex.length % 2, 0, 'Incomplete hex')
return new BigInteger(hex, 16)
}
BigInteger.prototype.toBuffer = function(size) {
var byteArray = this.toByteArrayUnsigned()
var zeros = []
var padding = size - byteArray.length
while (zeros.length < padding) zeros.push(0)
return new Buffer(zeros.concat(byteArray))
}
BigInteger.prototype.toHex = function(size) {
return this.toBuffer(size).toString('hex')
}
}).call(this,require("buffer").Buffer)
},{"./bigi":4,"assert":691,"buffer":706}],6:[function(require,module,exports){
var BigInteger = require('./bigi')
//addons
require('./convert')
module.exports = BigInteger
},{"./bigi":4,"./convert":5}],7:[function(require,module,exports){
module.exports={
"name": "bigi",
"version": "1.4.1",
"description": "Big integers.",
"keywords": [
"cryptography",
"math",
"bitcoin",
"arbitrary",
"precision",
"arithmetic",
"big",
"integer",
"int",
"number",
"biginteger",
"bigint",
"bignumber",
"decimal",
"float"
],
"devDependencies": {
"coveralls": "^2.11.2",
"istanbul": "^0.3.5",
"jshint": "^2.5.1",
"mocha": "^2.1.0",
"mochify": "^2.1.0"
},
"repository": {
"url": "git+https://github.com/cryptocoinjs/bigi.git",
"type": "git"
},
"main": "./lib/index.js",
"scripts": {
"browser-test": "mochify --wd -R spec",
"test": "_mocha -- test/*.js",
"jshint": "jshint --config jshint.json lib/*.js ; true",
"unit": "mocha",
"coverage": "istanbul cover ./node_modules/.bin/_mocha -- --reporter list test/*.js",
"coveralls": "npm run-script coverage && node ./node_modules/.bin/coveralls < coverage/lcov.info"
},
"dependencies": {},
"testling": {
"files": "test/*.js",
"harness": "mocha",
"browsers": [
"ie/9..latest",
"firefox/latest",
"chrome/latest",
"safari/6.0..latest",
"iphone/6.0..latest",
"android-browser/4.2..latest"
]
},
"gitHead": "7d034a1b38ca90f68daa9de472dda2fb813836f1",
"bugs": {
"url": "https://github.com/cryptocoinjs/bigi/issues"
},
"homepage": "https://github.com/cryptocoinjs/bigi#readme",
"_id": "bigi@1.4.1",
"_shasum": "726e8ab08d1fe1dfb8aa6bb6309bffecf93a21b7",
"_from": "bigi@>=1.4.0 <2.0.0",
"_npmVersion": "2.10.1",
"_nodeVersion": "2.1.0",
"_npmUser": {
"name": "jprichardson",
"email": "jprichardson@gmail.com"
},
"maintainers": [
{
"name": "midnightlightning",
"email": "boydb@midnightdesign.ws"
},
{
"name": "sidazhang",
"email": "sidazhang89@gmail.com"
},
{
"name": "nadav",
"email": "npm@shesek.info"
},
{
"name": "jprichardson",
"email": "jprichardson@gmail.com"
}
],
"dist": {
"shasum": "726e8ab08d1fe1dfb8aa6bb6309bffecf93a21b7",
"tarball": "http://registry.npmjs.org/bigi/-/bigi-1.4.1.tgz"
},
"directories": {},
"_resolved": "https://registry.npmjs.org/bigi/-/bigi-1.4.1.tgz",
"readme": "ERROR: No README data found!"
}
},{}],8:[function(require,module,exports){
(function (Buffer){
'use strict'
var base58 = require('bs58')
var createHash = require('create-hash')
// SHA256(SHA256(buffer))
function sha256x2 (buffer) {
buffer = createHash('sha256').update(buffer).digest()
return createHash('sha256').update(buffer).digest()
}
// Encode a buffer as a base58-check encoded string
function encode (payload) {
var checksum = sha256x2(payload).slice(0, 4)
return base58.encode(Buffer.concat([
payload,
checksum
]))
}
// Decode a base58-check encoded string to a buffer
function decode (string) {
var buffer = new Buffer(base58.decode(string))
var payload = buffer.slice(0, -4)
var checksum = buffer.slice(-4)
var newChecksum = sha256x2(payload).slice(0, 4)
for (var i = 0; i < newChecksum.length; ++i) {
if (newChecksum[i] === checksum[i]) continue
throw new Error('Invalid checksum')
}
return payload
}
module.exports = {
encode: encode,
decode: decode
}
}).call(this,require("buffer").Buffer)
},{"bs58":9,"buffer":706,"create-hash":10}],9:[function(require,module,exports){
// Base58 encoding/decoding
// Originally written by Mike Hearn for BitcoinJ
// Copyright (c) 2011 Google Inc
// Ported to JavaScript by Stefan Thomas
// Merged Buffer refactorings from base58-native by Stephen Pair
// Copyright (c) 2013 BitPay Inc
var ALPHABET = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
var ALPHABET_MAP = {}
for(var i = 0; i < ALPHABET.length; i++) {
ALPHABET_MAP[ALPHABET.charAt(i)] = i
}
var BASE = 58
function encode(buffer) {
if (buffer.length === 0) return ''
var i, j, digits = [0]
for (i = 0; i < buffer.length; i++) {
for (j = 0; j < digits.length; j++) digits[j] <<= 8
digits[0] += buffer[i]
var carry = 0
for (j = 0; j < digits.length; ++j) {
digits[j] += carry
carry = (digits[j] / BASE) | 0
digits[j] %= BASE
}
while (carry) {
digits.push(carry % BASE)
carry = (carry / BASE) | 0
}
}
// deal with leading zeros
for (i = 0; buffer[i] === 0 && i < buffer.length - 1; i++) digits.push(0)
// convert digits to a string
var stringOutput = ""
for (var i = digits.length - 1; i >= 0; i--) {
stringOutput = stringOutput + ALPHABET[digits[i]]
}
return stringOutput
}
function decode(string) {
if (string.length === 0) return []
var i, j, bytes = [0]
for (i = 0; i < string.length; i++) {
var c = string[i]
if (!(c in ALPHABET_MAP)) throw new Error('Non-base58 character')
for (j = 0; j < bytes.length; j++) bytes[j] *= BASE
bytes[0] += ALPHABET_MAP[c]
var carry = 0
for (j = 0; j < bytes.length; ++j) {
bytes[j] += carry
carry = bytes[j] >> 8
bytes[j] &= 0xff
}
while (carry) {
bytes.push(carry & 0xff)
carry >>= 8
}
}
// deal with leading zeros
for (i = 0; string[i] === '1' && i < string.length - 1; i++) bytes.push(0)
return bytes.reverse()
}
module.exports = {
encode: encode,
decode: decode
}
},{}],10:[function(require,module,exports){
(function (Buffer){
'use strict';
var inherits = require('inherits')
var md5 = require('./md5')
var rmd160 = require('ripemd160')
var sha = require('sha.js')
var Transform = require('stream').Transform
function HashNoConstructor(hash) {
Transform.call(this)
this._hash = hash
this.buffers = []
}
inherits(HashNoConstructor, Transform)
HashNoConstructor.prototype._transform = function (data, _, next) {
this.buffers.push(data)
next()
}
HashNoConstructor.prototype._flush = function (next) {
this.push(this.digest())
next()
}
HashNoConstructor.prototype.update = function (data, enc) {
if (typeof data === 'string') {
data = new Buffer(data, enc)
}
this.buffers.push(data)
return this
}
HashNoConstructor.prototype.digest = function (enc) {
var buf = Buffer.concat(this.buffers)
var r = this._hash(buf)
this.buffers = null
return enc ? r.toString(enc) : r
}
function Hash(hash) {
Transform.call(this)
this._hash = hash
}
inherits(Hash, Transform)
Hash.prototype._transform = function (data, enc, next) {
if (enc) data = new Buffer(data, enc)
this._hash.update(data)
next()
}
Hash.prototype._flush = function (next) {
this.push(this._hash.digest())
this._hash = null
next()
}
Hash.prototype.update = function (data, enc) {
if (typeof data === 'string') {
data = new Buffer(data, enc)
}
this._hash.update(data)
return this
}
Hash.prototype.digest = function (enc) {
var outData = this._hash.digest()
return enc ? outData.toString(enc) : outData
}
module.exports = function createHash (alg) {
if ('md5' === alg) return new HashNoConstructor(md5)
if ('rmd160' === alg) return new HashNoConstructor(rmd160)
return new Hash(sha(alg))
}
}).call(this,require("buffer").Buffer)
},{"./md5":12,"buffer":706,"inherits":13,"ripemd160":14,"sha.js":16,"stream":875}],11:[function(require,module