UNPKG

react-image-publisher

Version:

A common blockchain React component for publishing images with Bitstore and Open Publish

2,108 lines (1,883 loc) 9.27 MB
(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){ 'use strict'; var React = require('react'); var ImagePublisher = require('../src'); var NoBalance = require('./no-balance'); var commonBlockchain = require('blockcypher-unofficial')({ network: 'testnet', inBrowser: true }); var faucet = require('common-faucet'); var faucetClient = faucet({ network: 'testnet', commonBlockchain: commonBlockchain, inBrowser: true }); var seed = 'test'; if (window.location.search.split('?seed=') && window.location.search.split('?seed=')[1]) { seed = window.location.search.split('?seed=')[1]; } var testCommonWallet = require('test-common-wallet'); var commonWallet = testCommonWallet({ seed: seed, network: 'testnet', commonBlockchain: commonBlockchain }); // faucetClient.Get({ // faucetURL: "http://blockai-faucet.herokuapp.com/", // address: commonWallet.address // }, function(err, receipt) { // console.log(err, receipt); // }); commonBlockchain.Addresses.Summary([commonWallet.address], function (err, adrs) { var balance = adrs && adrs[0] ? adrs[0].balance : 0; React.render(React.createElement(ImagePublisher, { balance: balance, NoBalance: NoBalance, commonBlockchain: commonBlockchain, commonWallet: commonWallet }), document.getElementById('example')); }); },{"../src":892,"./no-balance":2,"blockcypher-unofficial":107,"common-faucet":114,"react":487,"test-common-wallet":592}],2:[function(require,module,exports){ 'use strict'; var React = require('react'); var NoBalance = React.createClass({ displayName: 'NoBalance', render: function render() { var address = this.props.address; var intentMessage = this.props.intentMessage; var tweetUrlBase = 'https://twitter.com/intent/tweet'; tweetUrlBase += '?text=' + encodeURIComponent('My wallet, ' + address + ', needs some funds ' + intentMessage + '!'); tweetUrlBase += '&hashtags=needbitcoin'; //tweetUrlBase += '&url=' + encodeURIComponent('https://www.blockai.com/address/' + address); return React.createElement( 'div', { className: 'no-balance' }, React.createElement( 'h4', null, 'Uh oh, you don\'t have any Bitcoin!' ), React.createElement( 'p', null, 'If you\'d like ', intentMessage, ' you\'re going need to get some Bitcoin.' ), React.createElement( 'p', null, 'If you or someone you know does have Bitcoin, send some to this address: ', React.createElement( 'a', { href: 'bitcoin:' + address }, address ) ), React.createElement( 'p', null, 'If not, don\'t worry, there\'s a lot of people ready to give out a few cents worth to get new people involved!' ), React.createElement( 'p', null, 'Sometimes ', React.createElement( 'strong', null, 'it can take a few minutes' ), ' for the Bitcoin network to register a transaciton and update your balance. Please be patient!' ), React.createElement( 'p', null, React.createElement( 'a', { href: tweetUrlBase, className: 'btn btn-primary' }, 'Ask on Twitter for Bitcoin' ) ) ); } }); module.exports = NoBalance; },{"react":487}],3:[function(require,module,exports){ var bitcoin = require('bitcoinjs-lib'); var txHexToJSON = function(hex) { var tx = bitcoin.Transaction.fromHex(hex); var txid = tx.getId(); var vin = []; tx.ins.forEach(function(input) { var input_txid = bitcoin.bufferutils.reverse(input.hash).toString("hex"); vin.push({ txid: input_txid, txId: input_txid, vout: input.index, scriptSig: { hex: input.script.buffer.toString("hex") }, sequence: input.sequence, addresses: ["msLoJikUfxbc2U5UhRSjc2svusBSqMdqxZ"] }); }); var vout = []; tx.outs.forEach(function(output, index) { var script_type = bitcoin.scripts.classifyOutput(output.script); var address = script_type == "pubkeyhash" || script_type == "scripthash" ? bitcoin.Address.fromOutputScript(output.script, bitcoin.networks.testnet).toString() : null; vout.push({ value: output.value, index: index, n: index, scriptPubKey: { hex: output.script.buffer.toString("hex"), asm: output.script.toASM(), type: script_type, addresses: [address] } }); }); return { confirmations: null, blockheight: null, blocktime: null, blockhash: null, timeReceived: new Date().getTime(), txHex: hex, hex: hex, txid: txid, txId: txid, version: tx.version, locktime: tx.locktime, vin: vin, vout: vout } }; module.exports = txHexToJSON; },{"bitcoinjs-lib":41}],4:[function(require,module,exports){ // (public) Constructor function BigInteger(a, b, c) { if (!(this instanceof BigInteger)) return new BigInteger(a, b, c) if (a != null) { if ("number" == typeof a) this.fromNumber(a, b, c) else if (b == null && "string" != typeof a) this.fromString(a, 256) else this.fromString(a, b) } } var proto = BigInteger.prototype // duck-typed isBigInteger proto.__bigi = require('../package.json').version BigInteger.isBigInteger = function (obj, check_ver) { return obj && obj.__bigi && (!check_ver || obj.__bigi === proto.__bigi) } // Bits per digit var dbits // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c c = Math.floor(v / 0x4000000) w[j++] = v & 0x3ffffff } return c } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff, xh = x >> 15 while (--n >= 0) { var l = this[i] & 0x7fff var h = this[i++] >> 15 var m = xh * l + h * xl l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff) c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30) w[j++] = l & 0x3fffffff } return c } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff, xh = x >> 14 while (--n >= 0) { var l = this[i] & 0x3fff var h = this[i++] >> 14 var m = xh * l + h * xl l = xl * l + ((m & 0x3fff) << 14) + w[j] + c c = (l >> 28) + (m >> 14) + xh * h w[j++] = l & 0xfffffff } return c } // wtf? BigInteger.prototype.am = am1 dbits = 26 BigInteger.prototype.DB = dbits BigInteger.prototype.DM = ((1 << dbits) - 1) var DV = BigInteger.prototype.DV = (1 << dbits) var BI_FP = 52 BigInteger.prototype.FV = Math.pow(2, BI_FP) BigInteger.prototype.F1 = BI_FP - dbits BigInteger.prototype.F2 = 2 * dbits - BI_FP // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz" var BI_RC = new Array() var rr, vv rr = "0".charCodeAt(0) for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv rr = "a".charCodeAt(0) for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv rr = "A".charCodeAt(0) for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv function int2char(n) { return BI_RM.charAt(n) } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)] return (c == null) ? -1 : c } // (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1; i >= 0; --i) r[i] = this[i] r.t = this.t r.s = this.s } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1 this.s = (x < 0) ? -1 : 0 if (x > 0) this[0] = x else if (x < -1) this[0] = x + DV else this.t = 0 } // return bigint initialized to value function nbv(i) { var r = new BigInteger() r.fromInt(i) return r } // (protected) set from string and radix function bnpFromString(s, b) { var self = this var k if (b == 16) k = 4 else if (b == 8) k = 3 else if (b == 256) k = 8; // byte array else if (b == 2) k = 1 else if (b == 32) k = 5 else if (b == 4) k = 2 else { self.fromRadix(s, b) return } self.t = 0 self.s = 0 var i = s.length, mi = false, sh = 0 while (--i >= 0) { var x = (k == 8) ? s[i] & 0xff : intAt(s, i) if (x < 0) { if (s.charAt(i) == "-") mi = true continue } mi = false if (sh == 0) self[self.t++] = x else if (sh + k > self.DB) { self[self.t - 1] |= (x & ((1 << (self.DB - sh)) - 1)) << sh self[self.t++] = (x >> (self.DB - sh)) } else self[self.t - 1] |= x << sh sh += k if (sh >= self.DB) sh -= self.DB } if (k == 8 && (s[0] & 0x80) != 0) { self.s = -1 if (sh > 0) self[self.t - 1] |= ((1 << (self.DB - sh)) - 1) << sh } self.clamp() if (mi) BigInteger.ZERO.subTo(self, self) } // (protected) clamp off excess high words function bnpClamp() { var c = this.s & this.DM while (this.t > 0 && this[this.t - 1] == c)--this.t } // (public) return string representation in given radix function bnToString(b) { var self = this if (self.s < 0) return "-" + self.negate() .toString(b) var k if (b == 16) k = 4 else if (b == 8) k = 3 else if (b == 2) k = 1 else if (b == 32) k = 5 else if (b == 4) k = 2 else return self.toRadix(b) var km = (1 << k) - 1, d, m = false, r = "", i = self.t var p = self.DB - (i * self.DB) % k if (i-- > 0) { if (p < self.DB && (d = self[i] >> p) > 0) { m = true r = int2char(d) } while (i >= 0) { if (p < k) { d = (self[i] & ((1 << p) - 1)) << (k - p) d |= self[--i] >> (p += self.DB - k) } else { d = (self[i] >> (p -= k)) & km if (p <= 0) { p += self.DB --i } } if (d > 0) m = true if (m) r += int2char(d) } } return m ? r : "0" } // (public) -this function bnNegate() { var r = new BigInteger() BigInteger.ZERO.subTo(this, r) return r } // (public) |this| function bnAbs() { return (this.s < 0) ? this.negate() : this } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s if (r != 0) return r var i = this.t r = i - a.t if (r != 0) return (this.s < 0) ? -r : r while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r return 0 } // returns bit length of the integer x function nbits(x) { var r = 1, t if ((t = x >>> 16) != 0) { x = t r += 16 } if ((t = x >> 8) != 0) { x = t r += 8 } if ((t = x >> 4) != 0) { x = t r += 4 } if ((t = x >> 2) != 0) { x = t r += 2 } if ((t = x >> 1) != 0) { x = t r += 1 } return r } // (public) return the number of bits in "this" function bnBitLength() { if (this.t <= 0) return 0 return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)) } // (public) return the number of bytes in "this" function bnByteLength() { return this.bitLength() >> 3 } // (protected) r = this << n*DB function bnpDLShiftTo(n, r) { var i for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i] for (i = n - 1; i >= 0; --i) r[i] = 0 r.t = this.t + n r.s = this.s } // (protected) r = this >> n*DB function bnpDRShiftTo(n, r) { for (var i = n; i < this.t; ++i) r[i - n] = this[i] r.t = Math.max(this.t - n, 0) r.s = this.s } // (protected) r = this << n function bnpLShiftTo(n, r) { var self = this var bs = n % self.DB var cbs = self.DB - bs var bm = (1 << cbs) - 1 var ds = Math.floor(n / self.DB), c = (self.s << bs) & self.DM, i for (i = self.t - 1; i >= 0; --i) { r[i + ds + 1] = (self[i] >> cbs) | c c = (self[i] & bm) << bs } for (i = ds - 1; i >= 0; --i) r[i] = 0 r[ds] = c r.t = self.t + ds + 1 r.s = self.s r.clamp() } // (protected) r = this >> n function bnpRShiftTo(n, r) { var self = this r.s = self.s var ds = Math.floor(n / self.DB) if (ds >= self.t) { r.t = 0 return } var bs = n % self.DB var cbs = self.DB - bs var bm = (1 << bs) - 1 r[0] = self[ds] >> bs for (var i = ds + 1; i < self.t; ++i) { r[i - ds - 1] |= (self[i] & bm) << cbs r[i - ds] = self[i] >> bs } if (bs > 0) r[self.t - ds - 1] |= (self.s & bm) << cbs r.t = self.t - ds r.clamp() } // (protected) r = this - a function bnpSubTo(a, r) { var self = this var i = 0, c = 0, m = Math.min(a.t, self.t) while (i < m) { c += self[i] - a[i] r[i++] = c & self.DM c >>= self.DB } if (a.t < self.t) { c -= a.s while (i < self.t) { c += self[i] r[i++] = c & self.DM c >>= self.DB } c += self.s } else { c += self.s while (i < a.t) { c -= a[i] r[i++] = c & self.DM c >>= self.DB } c -= a.s } r.s = (c < 0) ? -1 : 0 if (c < -1) r[i++] = self.DV + c else if (c > 0) r[i++] = c r.t = i r.clamp() } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a, r) { var x = this.abs(), y = a.abs() var i = x.t r.t = i + y.t while (--i >= 0) r[i] = 0 for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t) r.s = 0 r.clamp() if (this.s != a.s) BigInteger.ZERO.subTo(r, r) } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs() var i = r.t = 2 * x.t while (--i >= 0) r[i] = 0 for (i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1) if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV r[i + x.t + 1] = 1 } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1) r.s = 0 r.clamp() } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m, q, r) { var self = this var pm = m.abs() if (pm.t <= 0) return var pt = self.abs() if (pt.t < pm.t) { if (q != null) q.fromInt(0) if (r != null) self.copyTo(r) return } if (r == null) r = new BigInteger() var y = new BigInteger(), ts = self.s, ms = m.s var nsh = self.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y) pt.lShiftTo(nsh, r) } else { pm.copyTo(y) pt.copyTo(r) } var ys = y.t var y0 = y[ys - 1] if (y0 == 0) return var yt = y0 * (1 << self.F1) + ((ys > 1) ? y[ys - 2] >> self.F2 : 0) var d1 = self.FV / yt, d2 = (1 << self.F1) / yt, e = 1 << self.F2 var i = r.t, j = i - ys, t = (q == null) ? new BigInteger() : q y.dlShiftTo(j, t) if (r.compareTo(t) >= 0) { r[r.t++] = 1 r.subTo(t, r) } BigInteger.ONE.dlShiftTo(ys, t) t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0 while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? self.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2) if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t) r.subTo(t, r) while (r[i] < --qd) r.subTo(t, r) } } if (q != null) { r.drShiftTo(ys, q) if (ts != ms) BigInteger.ZERO.subTo(q, q) } r.t = ys r.clamp() if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r) } // (public) this mod a function bnMod(a) { var r = new BigInteger() this.abs() .divRemTo(a, null, r) if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r) return r } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m) else return x } function cRevert(x) { return x } function cReduce(x) { x.divRemTo(this.m, null, x) } function cMulTo(x, y, r) { x.multiplyTo(y, r) this.reduce(r) } function cSqrTo(x, r) { x.squareTo(r) this.reduce(r) } Classic.prototype.convert = cConvert Classic.prototype.revert = cRevert Classic.prototype.reduce = cReduce Classic.prototype.mulTo = cMulTo Classic.prototype.sqrTo = cSqrTo // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if (this.t < 1) return 0 var x = this[0] if ((x & 1) == 0) return 0 var y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y } // Montgomery reduction function Montgomery(m) { this.m = m this.mp = m.invDigit() this.mpl = this.mp & 0x7fff this.mph = this.mp >> 15 this.um = (1 << (m.DB - 15)) - 1 this.mt2 = 2 * m.t } // xR mod m function montConvert(x) { var r = new BigInteger() x.abs() .dlShiftTo(this.m.t, r) r.divRemTo(this.m, null, r) if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r) return r } // x/R mod m function montRevert(x) { var r = new BigInteger() x.copyTo(r) this.reduce(r) return r } // x = x/R mod m (HAC 14.32) function montReduce(x) { while (x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0 for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM // use am to combine the multiply-shift-add into one call j = i + this.m.t x[j] += this.m.am(0, u0, x, i, 0, this.m.t) // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV x[++j]++ } } x.clamp() x.drShiftTo(this.m.t, x) if (x.compareTo(this.m) >= 0) x.subTo(this.m, x) } // r = "x^2/R mod m"; x != r function montSqrTo(x, r) { x.squareTo(r) this.reduce(r) } // r = "xy/R mod m"; x,y != r function montMulTo(x, y, r) { x.multiplyTo(y, r) this.reduce(r) } Montgomery.prototype.convert = montConvert Montgomery.prototype.revert = montRevert Montgomery.prototype.reduce = montReduce Montgomery.prototype.mulTo = montMulTo Montgomery.prototype.sqrTo = montSqrTo // (protected) true iff this is even function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0 } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e, z) { if (e > 0xffffffff || e < 1) return BigInteger.ONE var r = new BigInteger(), r2 = new BigInteger(), g = z.convert(this), i = nbits(e) - 1 g.copyTo(r) while (--i >= 0) { z.sqrTo(r, r2) if ((e & (1 << i)) > 0) z.mulTo(r2, g, r) else { var t = r r = r2 r2 = t } } return z.revert(r) } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e, m) { var z if (e < 256 || m.isEven()) z = new Classic(m) else z = new Montgomery(m) return this.exp(e, z) } // protected proto.copyTo = bnpCopyTo proto.fromInt = bnpFromInt proto.fromString = bnpFromString proto.clamp = bnpClamp proto.dlShiftTo = bnpDLShiftTo proto.drShiftTo = bnpDRShiftTo proto.lShiftTo = bnpLShiftTo proto.rShiftTo = bnpRShiftTo proto.subTo = bnpSubTo proto.multiplyTo = bnpMultiplyTo proto.squareTo = bnpSquareTo proto.divRemTo = bnpDivRemTo proto.invDigit = bnpInvDigit proto.isEven = bnpIsEven proto.exp = bnpExp // public proto.toString = bnToString proto.negate = bnNegate proto.abs = bnAbs proto.compareTo = bnCompareTo proto.bitLength = bnBitLength proto.byteLength = bnByteLength proto.mod = bnMod proto.modPowInt = bnModPowInt // (public) function bnClone() { var r = new BigInteger() this.copyTo(r) return r } // (public) return value as integer function bnIntValue() { if (this.s < 0) { if (this.t == 1) return this[0] - this.DV else if (this.t == 0) return -1 } else if (this.t == 1) return this[0] else if (this.t == 0) return 0 // assumes 16 < DB < 32 return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0] } // (public) return value as byte function bnByteValue() { return (this.t == 0) ? this.s : (this[0] << 24) >> 24 } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t == 0) ? this.s : (this[0] << 16) >> 16 } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)) } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if (this.s < 0) return -1 else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0 else return 1 } // (protected) convert to radix string function bnpToRadix(b) { if (b == null) b = 10 if (this.signum() == 0 || b < 2 || b > 36) return "0" var cs = this.chunkSize(b) var a = Math.pow(b, cs) var d = nbv(a), y = new BigInteger(), z = new BigInteger(), r = "" this.divRemTo(d, y, z) while (y.signum() > 0) { r = (a + z.intValue()) .toString(b) .substr(1) + r y.divRemTo(d, y, z) } return z.intValue() .toString(b) + r } // (protected) convert from radix string function bnpFromRadix(s, b) { var self = this self.fromInt(0) if (b == null) b = 10 var cs = self.chunkSize(b) var d = Math.pow(b, cs), mi = false, j = 0, w = 0 for (var i = 0; i < s.length; ++i) { var x = intAt(s, i) if (x < 0) { if (s.charAt(i) == "-" && self.signum() == 0) mi = true continue } w = b * w + x if (++j >= cs) { self.dMultiply(d) self.dAddOffset(w, 0) j = 0 w = 0 } } if (j > 0) { self.dMultiply(Math.pow(b, j)) self.dAddOffset(w, 0) } if (mi) BigInteger.ZERO.subTo(self, self) } // (protected) alternate constructor function bnpFromNumber(a, b, c) { var self = this if ("number" == typeof b) { // new BigInteger(int,int,RNG) if (a < 2) self.fromInt(1) else { self.fromNumber(a, c) if (!self.testBit(a - 1)) // force MSB set self.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, self) if (self.isEven()) self.dAddOffset(1, 0); // force odd while (!self.isProbablePrime(b)) { self.dAddOffset(2, 0) if (self.bitLength() > a) self.subTo(BigInteger.ONE.shiftLeft(a - 1), self) } } } else { // new BigInteger(int,RNG) var x = new Array(), t = a & 7 x.length = (a >> 3) + 1 b.nextBytes(x) if (t > 0) x[0] &= ((1 << t) - 1) else x[0] = 0 self.fromString(x, 256) } } // (public) convert to bigendian byte array function bnToByteArray() { var self = this var i = self.t, r = new Array() r[0] = self.s var p = self.DB - (i * self.DB) % 8, d, k = 0 if (i-- > 0) { if (p < self.DB && (d = self[i] >> p) != (self.s & self.DM) >> p) r[k++] = d | (self.s << (self.DB - p)) while (i >= 0) { if (p < 8) { d = (self[i] & ((1 << p) - 1)) << (8 - p) d |= self[--i] >> (p += self.DB - 8) } else { d = (self[i] >> (p -= 8)) & 0xff if (p <= 0) { p += self.DB --i } } if ((d & 0x80) != 0) d |= -256 if (k === 0 && (self.s & 0x80) != (d & 0x80))++k if (k > 0 || d != self.s) r[k++] = d } } return r } function bnEquals(a) { return (this.compareTo(a) == 0) } function bnMin(a) { return (this.compareTo(a) < 0) ? this : a } function bnMax(a) { return (this.compareTo(a) > 0) ? this : a } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a, op, r) { var self = this var i, f, m = Math.min(a.t, self.t) for (i = 0; i < m; ++i) r[i] = op(self[i], a[i]) if (a.t < self.t) { f = a.s & self.DM for (i = m; i < self.t; ++i) r[i] = op(self[i], f) r.t = self.t } else { f = self.s & self.DM for (i = m; i < a.t; ++i) r[i] = op(f, a[i]) r.t = a.t } r.s = op(self.s, a.s) r.clamp() } // (public) this & a function op_and(x, y) { return x & y } function bnAnd(a) { var r = new BigInteger() this.bitwiseTo(a, op_and, r) return r } // (public) this | a function op_or(x, y) { return x | y } function bnOr(a) { var r = new BigInteger() this.bitwiseTo(a, op_or, r) return r } // (public) this ^ a function op_xor(x, y) { return x ^ y } function bnXor(a) { var r = new BigInteger() this.bitwiseTo(a, op_xor, r) return r } // (public) this & ~a function op_andnot(x, y) { return x & ~y } function bnAndNot(a) { var r = new BigInteger() this.bitwiseTo(a, op_andnot, r) return r } // (public) ~this function bnNot() { var r = new BigInteger() for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i] r.t = this.t r.s = ~this.s return r } // (public) this << n function bnShiftLeft(n) { var r = new BigInteger() if (n < 0) this.rShiftTo(-n, r) else this.lShiftTo(n, r) return r } // (public) this >> n function bnShiftRight(n) { var r = new BigInteger() if (n < 0) this.lShiftTo(-n, r) else this.rShiftTo(n, r) return r } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if (x == 0) return -1 var r = 0 if ((x & 0xffff) == 0) { x >>= 16 r += 16 } if ((x & 0xff) == 0) { x >>= 8 r += 8 } if ((x & 0xf) == 0) { x >>= 4 r += 4 } if ((x & 3) == 0) { x >>= 2 r += 2 } if ((x & 1) == 0)++r return r } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for (var i = 0; i < this.t; ++i) if (this[i] != 0) return i * this.DB + lbit(this[i]) if (this.s < 0) return this.t * this.DB return -1 } // return number of 1 bits in x function cbit(x) { var r = 0 while (x != 0) { x &= x - 1 ++r } return r } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s & this.DM for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x) return r } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n / this.DB) if (j >= this.t) return (this.s != 0) return ((this[j] & (1 << (n % this.DB))) != 0) } // (protected) this op (1<<n) function bnpChangeBit(n, op) { var r = BigInteger.ONE.shiftLeft(n) this.bitwiseTo(r, op, r) return r } // (public) this | (1<<n) function bnSetBit(n) { return this.changeBit(n, op_or) } // (public) this & ~(1<<n) function bnClearBit(n) { return this.changeBit(n, op_andnot) } // (public) this ^ (1<<n) function bnFlipBit(n) { return this.changeBit(n, op_xor) } // (protected) r = this + a function bnpAddTo(a, r) { var self = this var i = 0, c = 0, m = Math.min(a.t, self.t) while (i < m) { c += self[i] + a[i] r[i++] = c & self.DM c >>= self.DB } if (a.t < self.t) { c += a.s while (i < self.t) { c += self[i] r[i++] = c & self.DM c >>= self.DB } c += self.s } else { c += self.s while (i < a.t) { c += a[i] r[i++] = c & self.DM c >>= self.DB } c += a.s } r.s = (c < 0) ? -1 : 0 if (c > 0) r[i++] = c else if (c < -1) r[i++] = self.DV + c r.t = i r.clamp() } // (public) this + a function bnAdd(a) { var r = new BigInteger() this.addTo(a, r) return r } // (public) this - a function bnSubtract(a) { var r = new BigInteger() this.subTo(a, r) return r } // (public) this * a function bnMultiply(a) { var r = new BigInteger() this.multiplyTo(a, r) return r } // (public) this^2 function bnSquare() { var r = new BigInteger() this.squareTo(r) return r } // (public) this / a function bnDivide(a) { var r = new BigInteger() this.divRemTo(a, r, null) return r } // (public) this % a function bnRemainder(a) { var r = new BigInteger() this.divRemTo(a, null, r) return r } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = new BigInteger(), r = new BigInteger() this.divRemTo(a, q, r) return new Array(q, r) } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0, n - 1, this, 0, 0, this.t) ++this.t this.clamp() } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n, w) { if (n == 0) return while (this.t <= w) this[this.t++] = 0 this[w] += n while (this[w] >= this.DV) { this[w] -= this.DV if (++w >= this.t) this[this.t++] = 0 ++this[w] } } // A "null" reducer function NullExp() {} function nNop(x) { return x } function nMulTo(x, y, r) { x.multiplyTo(y, r) } function nSqrTo(x, r) { x.squareTo(r) } NullExp.prototype.convert = nNop NullExp.prototype.revert = nNop NullExp.prototype.mulTo = nMulTo NullExp.prototype.sqrTo = nSqrTo // (public) this^e function bnPow(e) { return this.exp(e, new NullExp()) } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a, n, r) { var i = Math.min(this.t + a.t, n) r.s = 0; // assumes a,this >= 0 r.t = i while (i > 0) r[--i] = 0 var j for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t) for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i) r.clamp() } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a, n, r) { --n var i = r.t = this.t + a.t - n r.s = 0; // assumes a,this >= 0 while (--i >= 0) r[i] = 0 for (i = Math.max(n - this.t, 0); i < a.t; ++i) r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n) r.clamp() r.drShiftTo(1, r) } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = new BigInteger() this.q3 = new BigInteger() BigInteger.ONE.dlShiftTo(2 * m.t, this.r2) this.mu = this.r2.divide(m) this.m = m } function barrettConvert(x) { if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m) else if (x.compareTo(this.m) < 0) return x else { var r = new BigInteger() x.copyTo(r) this.reduce(r) return r } } function barrettRevert(x) { return x } // x = x mod m (HAC 14.42) function barrettReduce(x) { var self = this x.drShiftTo(self.m.t - 1, self.r2) if (x.t > self.m.t + 1) { x.t = self.m.t + 1 x.clamp() } self.mu.multiplyUpperTo(self.r2, self.m.t + 1, self.q3) self.m.multiplyLowerTo(self.q3, self.m.t + 1, self.r2) while (x.compareTo(self.r2) < 0) x.dAddOffset(1, self.m.t + 1) x.subTo(self.r2, x) while (x.compareTo(self.m) >= 0) x.subTo(self.m, x) } // r = x^2 mod m; x != r function barrettSqrTo(x, r) { x.squareTo(r) this.reduce(r) } // r = x*y mod m; x,y != r function barrettMulTo(x, y, r) { x.multiplyTo(y, r) this.reduce(r) } Barrett.prototype.convert = barrettConvert Barrett.prototype.revert = barrettRevert Barrett.prototype.reduce = barrettReduce Barrett.prototype.mulTo = barrettMulTo Barrett.prototype.sqrTo = barrettSqrTo // (public) this^e % m (HAC 14.85) function bnModPow(e, m) { var i = e.bitLength(), k, r = nbv(1), z if (i <= 0) return r else if (i < 18) k = 1 else if (i < 48) k = 3 else if (i < 144) k = 4 else if (i < 768) k = 5 else k = 6 if (i < 8) z = new Classic(m) else if (m.isEven()) z = new Barrett(m) else z = new Montgomery(m) // precomputation var g = new Array(), n = 3, k1 = k - 1, km = (1 << k) - 1 g[1] = z.convert(this) if (k > 1) { var g2 = new BigInteger() z.sqrTo(g[1], g2) while (n <= km) { g[n] = new BigInteger() z.mulTo(g2, g[n - 2], g[n]) n += 2 } } var j = e.t - 1, w, is1 = true, r2 = new BigInteger(), t i = nbits(e[j]) - 1 while (j >= 0) { if (i >= k1) w = (e[j] >> (i - k1)) & km else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i) if (j > 0) w |= e[j - 1] >> (this.DB + i - k1) } n = k while ((w & 1) == 0) { w >>= 1 --n } if ((i -= n) < 0) { i += this.DB --j } if (is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r) is1 = false } else { while (n > 1) { z.sqrTo(r, r2) z.sqrTo(r2, r) n -= 2 } if (n > 0) z.sqrTo(r, r2) else { t = r r = r2 r2 = t } z.mulTo(r2, g[w], r) } while (j >= 0 && (e[j] & (1 << i)) == 0) { z.sqrTo(r, r2) t = r r = r2 r2 = t if (--i < 0) { i = this.DB - 1 --j } } } return z.revert(r) } // (public) gcd(this,a) (HAC 14.54) function bnGCD(a) { var x = (this.s < 0) ? this.negate() : this.clone() var y = (a.s < 0) ? a.negate() : a.clone() if (x.compareTo(y) < 0) { var t = x x = y y = t } var i = x.getLowestSetBit(), g = y.getLowestSetBit() if (g < 0) return x if (i < g) g = i if (g > 0) { x.rShiftTo(g, x) y.rShiftTo(g, y) } while (x.signum() > 0) { if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x) if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y) if (x.compareTo(y) >= 0) { x.subTo(y, x) x.rShiftTo(1, x) } else { y.subTo(x, y) y.rShiftTo(1, y) } } if (g > 0) y.lShiftTo(g, y) return y } // (protected) this % n, n < 2^26 function bnpModInt(n) { if (n <= 0) return 0 var d = this.DV % n, r = (this.s < 0) ? n - 1 : 0 if (this.t > 0) if (d == 0) r = this[0] % n else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n return r } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven() if (this.signum() === 0) throw new Error('division by zero') if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO var u = m.clone(), v = this.clone() var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1) while (u.signum() != 0) { while (u.isEven()) { u.rShiftTo(1, u) if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this, a) b.subTo(m, b) } a.rShiftTo(1, a) } else if (!b.isEven()) b.subTo(m, b) b.rShiftTo(1, b) } while (v.isEven()) { v.rShiftTo(1, v) if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this, c) d.subTo(m, d) } c.rShiftTo(1, c) } else if (!d.isEven()) d.subTo(m, d) d.rShiftTo(1, d) } if (u.compareTo(v) >= 0) { u.subTo(v, u) if (ac) a.subTo(c, a) b.subTo(d, b) } else { v.subTo(u, v) if (ac) c.subTo(a, c) d.subTo(b, d) } } if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO if (d.compareTo(m) >= 0) return d.subtract(m) if (d.signum() < 0) d.addTo(m, d) else return d if (d.signum() < 0) return d.add(m) else return d } var lowprimes = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ] var lplim = (1 << 26) / lowprimes[lowprimes.length - 1] // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i, x = this.abs() if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) { for (i = 0; i < lowprimes.length; ++i) if (x[0] == lowprimes[i]) return true return false } if (x.isEven()) return false i = 1 while (i < lowprimes.length) { var m = lowprimes[i], j = i + 1 while (j < lowprimes.length && m < lplim) m *= lowprimes[j++] m = x.modInt(m) while (i < j) if (m % lowprimes[i++] == 0) return false } return x.millerRabin(t) } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE) var k = n1.getLowestSetBit() if (k <= 0) return false var r = n1.shiftRight(k) t = (t + 1) >> 1 if (t > lowprimes.length) t = lowprimes.length var a = new BigInteger(null) var j, bases = [] for (var i = 0; i < t; ++i) { for (;;) { j = lowprimes[Math.floor(Math.random() * lowprimes.length)] if (bases.indexOf(j) == -1) break } bases.push(j) a.fromInt(j) var y = a.modPow(r, this) if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1 while (j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2, this) if (y.compareTo(BigInteger.ONE) == 0) return false } if (y.compareTo(n1) != 0) return false } } return true } // protected proto.chunkSize = bnpChunkSize proto.toRadix = bnpToRadix proto.fromRadix = bnpFromRadix proto.fromNumber = bnpFromNumber proto.bitwiseTo = bnpBitwiseTo proto.changeBit = bnpChangeBit proto.addTo = bnpAddTo proto.dMultiply = bnpDMultiply proto.dAddOffset = bnpDAddOffset proto.multiplyLowerTo = bnpMultiplyLowerTo proto.multiplyUpperTo = bnpMultiplyUpperTo proto.modInt = bnpModInt proto.millerRabin = bnpMillerRabin // public proto.clone = bnClone proto.intValue = bnIntValue proto.byteValue = bnByteValue proto.shortValue = bnShortValue proto.signum = bnSigNum proto.toByteArray = bnToByteArray proto.equals = bnEquals proto.min = bnMin proto.max = bnMax proto.and = bnAnd proto.or = bnOr proto.xor = bnXor proto.andNot = bnAndNot proto.not = bnNot proto.shiftLeft = bnShiftLeft proto.shiftRight = bnShiftRight proto.getLowestSetBit = bnGetLowestSetBit proto.bitCount = bnBitCount proto.testBit = bnTestBit proto.setBit = bnSetBit proto.clearBit = bnClearBit proto.flipBit = bnFlipBit proto.add = bnAdd proto.subtract = bnSubtract proto.multiply = bnMultiply proto.divide = bnDivide proto.remainder = bnRemainder proto.divideAndRemainder = bnDivideAndRemainder proto.modPow = bnModPow proto.modInverse = bnModInverse proto.pow = bnPow proto.gcd = bnGCD proto.isProbablePrime = bnIsProbablePrime // JSBN-specific extension proto.square = bnSquare // constants BigInteger.ZERO = nbv(0) BigInteger.ONE = nbv(1) BigInteger.valueOf = nbv module.exports = BigInteger },{"../package.json":7}],5:[function(require,module,exports){ (function (Buffer){ // FIXME: Kind of a weird way to throw exceptions, consider removing var assert = require('assert') var BigInteger = require('./bigi') /** * Turns a byte array into a big integer. * * This function will interpret a byte array as a big integer in big * endian notation. */ BigInteger.fromByteArrayUnsigned = function(byteArray) { // BigInteger expects a DER integer conformant byte array if (byteArray[0] & 0x80) { return new BigInteger([0].concat(byteArray)) } return new BigInteger(byteArray) } /** * Returns a byte array representation of the big integer. * * This returns the absolute of the contained value in big endian * form. A value of zero results in an empty array. */ BigInteger.prototype.toByteArrayUnsigned = function() { var byteArray = this.toByteArray() return byteArray[0] === 0 ? byteArray.slice(1) : byteArray } BigInteger.fromDERInteger = function(byteArray) { return new BigInteger(byteArray) } /* * Converts BigInteger to a DER integer representation. * * The format for this value uses the most significant bit as a sign * bit. If the most significant bit is already set and the integer is * positive, a 0x00 is prepended. * * Examples: * * 0 => 0x00 * 1 => 0x01 * -1 => 0xff * 127 => 0x7f * -127 => 0x81 * 128 => 0x0080 * -128 => 0x80 * 255 => 0x00ff * -255 => 0xff01 * 16300 => 0x3fac * -16300 => 0xc054 * 62300 => 0x00f35c * -62300 => 0xff0ca4 */ BigInteger.prototype.toDERInteger = BigInteger.prototype.toByteArray BigInteger.fromBuffer = function(buffer) { // BigInteger expects a DER integer conformant byte array if (buffer[0] & 0x80) { var byteArray = Array.prototype.slice.call(buffer) return new BigInteger([0].concat(byteArray)) } return new BigInteger(buffer) } BigInteger.fromHex = function(hex) { if (hex === '') return BigInteger.ZERO assert.equal(hex, hex.match(/^[A-Fa-f0-9]+/), 'Invalid hex string') assert.equal(hex.length % 2, 0, 'Incomplete hex') return new BigInteger(hex, 16) } BigInteger.prototype.toBuffer = function(size) { var byteArray = this.toByteArrayUnsigned() var zeros = [] var padding = size - byteArray.length while (zeros.length < padding) zeros.push(0) return new Buffer(zeros.concat(byteArray)) } BigInteger.prototype.toHex = function(size) { return this.toBuffer(size).toString('hex') } }).call(this,require("buffer").Buffer) },{"./bigi":4,"assert":691,"buffer":706}],6:[function(require,module,exports){ var BigInteger = require('./bigi') //addons require('./convert') module.exports = BigInteger },{"./bigi":4,"./convert":5}],7:[function(require,module,exports){ module.exports={ "name": "bigi", "version": "1.4.1", "description": "Big integers.", "keywords": [ "cryptography", "math", "bitcoin", "arbitrary", "precision", "arithmetic", "big", "integer", "int", "number", "biginteger", "bigint", "bignumber", "decimal", "float" ], "devDependencies": { "coveralls": "^2.11.2", "istanbul": "^0.3.5", "jshint": "^2.5.1", "mocha": "^2.1.0", "mochify": "^2.1.0" }, "repository": { "url": "git+https://github.com/cryptocoinjs/bigi.git", "type": "git" }, "main": "./lib/index.js", "scripts": { "browser-test": "mochify --wd -R spec", "test": "_mocha -- test/*.js", "jshint": "jshint --config jshint.json lib/*.js ; true", "unit": "mocha", "coverage": "istanbul cover ./node_modules/.bin/_mocha -- --reporter list test/*.js", "coveralls": "npm run-script coverage && node ./node_modules/.bin/coveralls < coverage/lcov.info" }, "dependencies": {}, "testling": { "files": "test/*.js", "harness": "mocha", "browsers": [ "ie/9..latest", "firefox/latest", "chrome/latest", "safari/6.0..latest", "iphone/6.0..latest", "android-browser/4.2..latest" ] }, "gitHead": "7d034a1b38ca90f68daa9de472dda2fb813836f1", "bugs": { "url": "https://github.com/cryptocoinjs/bigi/issues" }, "homepage": "https://github.com/cryptocoinjs/bigi#readme", "_id": "bigi@1.4.1", "_shasum": "726e8ab08d1fe1dfb8aa6bb6309bffecf93a21b7", "_from": "bigi@>=1.4.0 <2.0.0", "_npmVersion": "2.10.1", "_nodeVersion": "2.1.0", "_npmUser": { "name": "jprichardson", "email": "jprichardson@gmail.com" }, "maintainers": [ { "name": "midnightlightning", "email": "boydb@midnightdesign.ws" }, { "name": "sidazhang", "email": "sidazhang89@gmail.com" }, { "name": "nadav", "email": "npm@shesek.info" }, { "name": "jprichardson", "email": "jprichardson@gmail.com" } ], "dist": { "shasum": "726e8ab08d1fe1dfb8aa6bb6309bffecf93a21b7", "tarball": "http://registry.npmjs.org/bigi/-/bigi-1.4.1.tgz" }, "directories": {}, "_resolved": "https://registry.npmjs.org/bigi/-/bigi-1.4.1.tgz", "readme": "ERROR: No README data found!" } },{}],8:[function(require,module,exports){ (function (Buffer){ 'use strict' var base58 = require('bs58') var createHash = require('create-hash') // SHA256(SHA256(buffer)) function sha256x2 (buffer) { buffer = createHash('sha256').update(buffer).digest() return createHash('sha256').update(buffer).digest() } // Encode a buffer as a base58-check encoded string function encode (payload) { var checksum = sha256x2(payload).slice(0, 4) return base58.encode(Buffer.concat([ payload, checksum ])) } // Decode a base58-check encoded string to a buffer function decode (string) { var buffer = new Buffer(base58.decode(string)) var payload = buffer.slice(0, -4) var checksum = buffer.slice(-4) var newChecksum = sha256x2(payload).slice(0, 4) for (var i = 0; i < newChecksum.length; ++i) { if (newChecksum[i] === checksum[i]) continue throw new Error('Invalid checksum') } return payload } module.exports = { encode: encode, decode: decode } }).call(this,require("buffer").Buffer) },{"bs58":9,"buffer":706,"create-hash":10}],9:[function(require,module,exports){ // Base58 encoding/decoding // Originally written by Mike Hearn for BitcoinJ // Copyright (c) 2011 Google Inc // Ported to JavaScript by Stefan Thomas // Merged Buffer refactorings from base58-native by Stephen Pair // Copyright (c) 2013 BitPay Inc var ALPHABET = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' var ALPHABET_MAP = {} for(var i = 0; i < ALPHABET.length; i++) { ALPHABET_MAP[ALPHABET.charAt(i)] = i } var BASE = 58 function encode(buffer) { if (buffer.length === 0) return '' var i, j, digits = [0] for (i = 0; i < buffer.length; i++) { for (j = 0; j < digits.length; j++) digits[j] <<= 8 digits[0] += buffer[i] var carry = 0 for (j = 0; j < digits.length; ++j) { digits[j] += carry carry = (digits[j] / BASE) | 0 digits[j] %= BASE } while (carry) { digits.push(carry % BASE) carry = (carry / BASE) | 0 } } // deal with leading zeros for (i = 0; buffer[i] === 0 && i < buffer.length - 1; i++) digits.push(0) // convert digits to a string var stringOutput = "" for (var i = digits.length - 1; i >= 0; i--) { stringOutput = stringOutput + ALPHABET[digits[i]] } return stringOutput } function decode(string) { if (string.length === 0) return [] var i, j, bytes = [0] for (i = 0; i < string.length; i++) { var c = string[i] if (!(c in ALPHABET_MAP)) throw new Error('Non-base58 character') for (j = 0; j < bytes.length; j++) bytes[j] *= BASE bytes[0] += ALPHABET_MAP[c] var carry = 0 for (j = 0; j < bytes.length; ++j) { bytes[j] += carry carry = bytes[j] >> 8 bytes[j] &= 0xff } while (carry) { bytes.push(carry & 0xff) carry >>= 8 } } // deal with leading zeros for (i = 0; string[i] === '1' && i < string.length - 1; i++) bytes.push(0) return bytes.reverse() } module.exports = { encode: encode, decode: decode } },{}],10:[function(require,module,exports){ (function (Buffer){ 'use strict'; var inherits = require('inherits') var md5 = require('./md5') var rmd160 = require('ripemd160') var sha = require('sha.js') var Transform = require('stream').Transform function HashNoConstructor(hash) { Transform.call(this) this._hash = hash this.buffers = [] } inherits(HashNoConstructor, Transform) HashNoConstructor.prototype._transform = function (data, _, next) { this.buffers.push(data) next() } HashNoConstructor.prototype._flush = function (next) { this.push(this.digest()) next() } HashNoConstructor.prototype.update = function (data, enc) { if (typeof data === 'string') { data = new Buffer(data, enc) } this.buffers.push(data) return this } HashNoConstructor.prototype.digest = function (enc) { var buf = Buffer.concat(this.buffers) var r = this._hash(buf) this.buffers = null return enc ? r.toString(enc) : r } function Hash(hash) { Transform.call(this) this._hash = hash } inherits(Hash, Transform) Hash.prototype._transform = function (data, enc, next) { if (enc) data = new Buffer(data, enc) this._hash.update(data) next() } Hash.prototype._flush = function (next) { this.push(this._hash.digest()) this._hash = null next() } Hash.prototype.update = function (data, enc) { if (typeof data === 'string') { data = new Buffer(data, enc) } this._hash.update(data) return this } Hash.prototype.digest = function (enc) { var outData = this._hash.digest() return enc ? outData.toString(enc) : outData } module.exports = function createHash (alg) { if ('md5' === alg) return new HashNoConstructor(md5) if ('rmd160' === alg) return new HashNoConstructor(rmd160) return new Hash(sha(alg)) } }).call(this,require("buffer").Buffer) },{"./md5":12,"buffer":706,"inherits":13,"ripemd160":14,"sha.js":16,"stream":875}],11:[function(require,module