react-force-graph-3d
Version:
React component for 3D force directed graphs
2,061 lines (1,772 loc) • 3.72 MB
JavaScript
// Version 1.28.0 react-force-graph-3d - https://github.com/vasturiano/react-force-graph
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('react')) :
typeof define === 'function' && define.amd ? define(['react'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.ForceGraph3D = factory(global.React));
})(this, (function (React) { 'use strict';
function _iterableToArrayLimit$6(arr, i) {
var _i = null == arr ? null : "undefined" != typeof Symbol && arr[Symbol.iterator] || arr["@@iterator"];
if (null != _i) {
var _s,
_e,
_x,
_r,
_arr = [],
_n = true,
_d = false;
try {
if (_x = (_i = _i.call(arr)).next, 0 === i) {
if (Object(_i) !== _i) return;
_n = !1;
} else for (; !(_n = (_s = _x.call(_i)).done) && (_arr.push(_s.value), _arr.length !== i); _n = !0);
} catch (err) {
_d = true, _e = err;
} finally {
try {
if (!_n && null != _i.return && (_r = _i.return(), Object(_r) !== _r)) return;
} finally {
if (_d) throw _e;
}
}
return _arr;
}
}
function _defineProperty$4(obj, key, value) {
key = _toPropertyKey$5(key);
if (key in obj) {
Object.defineProperty(obj, key, {
value: value,
enumerable: true,
configurable: true,
writable: true
});
} else {
obj[key] = value;
}
return obj;
}
function _slicedToArray$6(arr, i) {
return _arrayWithHoles$6(arr) || _iterableToArrayLimit$6(arr, i) || _unsupportedIterableToArray$7(arr, i) || _nonIterableRest$6();
}
function _toConsumableArray$5(arr) {
return _arrayWithoutHoles$5(arr) || _iterableToArray$5(arr) || _unsupportedIterableToArray$7(arr) || _nonIterableSpread$5();
}
function _arrayWithoutHoles$5(arr) {
if (Array.isArray(arr)) return _arrayLikeToArray$7(arr);
}
function _arrayWithHoles$6(arr) {
if (Array.isArray(arr)) return arr;
}
function _iterableToArray$5(iter) {
if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter);
}
function _unsupportedIterableToArray$7(o, minLen) {
if (!o) return;
if (typeof o === "string") return _arrayLikeToArray$7(o, minLen);
var n = Object.prototype.toString.call(o).slice(8, -1);
if (n === "Object" && o.constructor) n = o.constructor.name;
if (n === "Map" || n === "Set") return Array.from(o);
if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$7(o, minLen);
}
function _arrayLikeToArray$7(arr, len) {
if (len == null || len > arr.length) len = arr.length;
for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];
return arr2;
}
function _nonIterableSpread$5() {
throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
function _nonIterableRest$6() {
throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
function _toPrimitive$5(input, hint) {
if (typeof input !== "object" || input === null) return input;
var prim = input[Symbol.toPrimitive];
if (prim !== undefined) {
var res = prim.call(input, hint);
if (typeof res !== "object") return res;
throw new TypeError("@@toPrimitive must return a primitive value.");
}
return (hint === "string" ? String : Number)(input);
}
function _toPropertyKey$5(arg) {
var key = _toPrimitive$5(arg, "string");
return typeof key === "symbol" ? key : String(key);
}
var omit = function omit(obj, keys) {
var keySet = new Set(keys);
return Object.assign.apply(Object, [{}].concat(_toConsumableArray$5(Object.entries(obj).filter(function (_ref2) {
var _ref3 = _slicedToArray$6(_ref2, 1),
key = _ref3[0];
return !keySet.has(key);
}).map(function (_ref4) {
var _ref5 = _slicedToArray$6(_ref4, 2),
key = _ref5[0],
val = _ref5[1];
return _defineProperty$4({}, key, val);
}))));
};
function _arrayLikeToArray$6(r, a) {
(null == a || a > r.length) && (a = r.length);
for (var e = 0, n = Array(a); e < a; e++) n[e] = r[e];
return n;
}
function _arrayWithHoles$5(r) {
if (Array.isArray(r)) return r;
}
function _arrayWithoutHoles$4(r) {
if (Array.isArray(r)) return _arrayLikeToArray$6(r);
}
function _iterableToArray$4(r) {
if ("undefined" != typeof Symbol && null != r[Symbol.iterator] || null != r["@@iterator"]) return Array.from(r);
}
function _iterableToArrayLimit$5(r, l) {
var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"];
if (null != t) {
var e,
n,
i,
u,
a = [],
f = true,
o = false;
try {
if (i = (t = t.call(r)).next, 0 === l) ; else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0);
} catch (r) {
o = true, n = r;
} finally {
try {
if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return;
} finally {
if (o) throw n;
}
}
return a;
}
}
function _nonIterableRest$5() {
throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
function _nonIterableSpread$4() {
throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
function _slicedToArray$5(r, e) {
return _arrayWithHoles$5(r) || _iterableToArrayLimit$5(r, e) || _unsupportedIterableToArray$6(r, e) || _nonIterableRest$5();
}
function _toConsumableArray$4(r) {
return _arrayWithoutHoles$4(r) || _iterableToArray$4(r) || _unsupportedIterableToArray$6(r) || _nonIterableSpread$4();
}
function _unsupportedIterableToArray$6(r, a) {
if (r) {
if ("string" == typeof r) return _arrayLikeToArray$6(r, a);
var t = {}.toString.call(r).slice(8, -1);
return "Object" === t && r.constructor && (t = r.constructor.name), "Map" === t || "Set" === t ? Array.from(r) : "Arguments" === t || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(t) ? _arrayLikeToArray$6(r, a) : void 0;
}
}
function index$4 (kapsuleComponent) {
var _ref = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {},
_ref$wrapperElementTy = _ref.wrapperElementType,
wrapperElementType = _ref$wrapperElementTy === void 0 ? 'div' : _ref$wrapperElementTy,
_ref$nodeMapper = _ref.nodeMapper,
nodeMapper = _ref$nodeMapper === void 0 ? function (node) {
return node;
} : _ref$nodeMapper,
_ref$methodNames = _ref.methodNames,
methodNames = _ref$methodNames === void 0 ? [] : _ref$methodNames,
_ref$initPropNames = _ref.initPropNames,
initPropNames = _ref$initPropNames === void 0 ? [] : _ref$initPropNames;
return /*#__PURE__*/React.forwardRef(function (props, ref) {
var domEl = React.useRef();
// instantiate the inner kapsule component with the defined initPropNames
var comp = React.useMemo(function () {
var configOptions = Object.fromEntries(initPropNames.filter(function (p) {
return props.hasOwnProperty(p);
}).map(function (prop) {
return [prop, props[prop]];
}));
return kapsuleComponent(configOptions);
}, []);
useEffectOnce(function () {
comp(nodeMapper(domEl.current)); // mount kapsule synchronously on this element ref, optionally mapped into an object that the kapsule understands
}, React.useLayoutEffect);
useEffectOnce(function () {
// invoke destructor on unmount, if it exists
return comp._destructor instanceof Function ? comp._destructor : undefined;
});
// Call a component method
var _call = React.useCallback(function (method) {
for (var _len = arguments.length, args = new Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) {
args[_key - 1] = arguments[_key];
}
return comp[method] instanceof Function ? comp[method].apply(comp, args) : undefined;
} // method not found
, [comp]);
// propagate component props that have changed
var prevPropsRef = React.useRef({});
Object.keys(omit(props, [].concat(_toConsumableArray$4(methodNames), _toConsumableArray$4(initPropNames)))) // initPropNames or methodNames should not be called
.filter(function (p) {
return prevPropsRef.current[p] !== props[p];
}).forEach(function (p) {
return _call(p, props[p]);
});
prevPropsRef.current = props;
// bind external methods to parent ref
React.useImperativeHandle(ref, function () {
return Object.fromEntries(methodNames.map(function (method) {
return [method, function () {
for (var _len2 = arguments.length, args = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) {
args[_key2] = arguments[_key2];
}
return _call.apply(void 0, [method].concat(args));
}];
}));
}, [_call]);
return /*#__PURE__*/React.createElement(wrapperElementType, {
ref: domEl
});
});
}
//
// Handle R18 strict mode double mount at init
function useEffectOnce(effect) {
var useEffectFn = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : React.useEffect;
var destroyFunc = React.useRef();
var effectCalled = React.useRef(false);
var renderAfterCalled = React.useRef(false);
var _useState = React.useState(0),
_useState2 = _slicedToArray$5(_useState, 2);
_useState2[0];
var setVal = _useState2[1];
if (effectCalled.current) {
renderAfterCalled.current = true;
}
useEffectFn(function () {
// only execute the effect first time around
if (!effectCalled.current) {
destroyFunc.current = effect();
effectCalled.current = true;
}
// this forces one render after the effect is run
setVal(function (val) {
return val + 1;
});
return function () {
// if the comp didn't render since the useEffect was called,
// we know it's the dummy React cycle
if (!renderAfterCalled.current) return;
if (destroyFunc.current) destroyFunc.current();
};
}, []);
}
/**
* @license
* Copyright 2010-2025 Three.js Authors
* SPDX-License-Identifier: MIT
*/
const REVISION = '178';
/**
* Represents mouse buttons and interaction types in context of controls.
*
* @type {ConstantsMouse}
* @constant
*/
const MOUSE = { ROTATE: 0, DOLLY: 1, PAN: 2 };
/**
* Represents touch interaction types in context of controls.
*
* @type {ConstantsTouch}
* @constant
*/
const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
/**
* Disables face culling.
*
* @type {number}
* @constant
*/
const CullFaceNone = 0;
/**
* Culls back faces.
*
* @type {number}
* @constant
*/
const CullFaceBack = 1;
/**
* Culls front faces.
*
* @type {number}
* @constant
*/
const CullFaceFront = 2;
/**
* Gives unfiltered shadow maps - fastest, but lowest quality.
*
* @type {number}
* @constant
*/
const BasicShadowMap = 0;
/**
* Filters shadow maps using the Percentage-Closer Filtering (PCF) algorithm.
*
* @type {number}
* @constant
*/
const PCFShadowMap = 1;
/**
* Filters shadow maps using the Percentage-Closer Filtering (PCF) algorithm with
* better soft shadows especially when using low-resolution shadow maps.
*
* @type {number}
* @constant
*/
const PCFSoftShadowMap = 2;
/**
* Filters shadow maps using the Variance Shadow Map (VSM) algorithm.
* When using VSMShadowMap all shadow receivers will also cast shadows.
*
* @type {number}
* @constant
*/
const VSMShadowMap = 3;
/**
* Only front faces are rendered.
*
* @type {number}
* @constant
*/
const FrontSide = 0;
/**
* Only back faces are rendered.
*
* @type {number}
* @constant
*/
const BackSide = 1;
/**
* Both front and back faces are rendered.
*
* @type {number}
* @constant
*/
const DoubleSide = 2;
/**
* No blending is performed which effectively disables
* alpha transparency.
*
* @type {number}
* @constant
*/
const NoBlending = 0;
/**
* The default blending.
*
* @type {number}
* @constant
*/
const NormalBlending = 1;
/**
* Represents additive blending.
*
* @type {number}
* @constant
*/
const AdditiveBlending = 2;
/**
* Represents subtractive blending.
*
* @type {number}
* @constant
*/
const SubtractiveBlending = 3;
/**
* Represents multiply blending.
*
* @type {number}
* @constant
*/
const MultiplyBlending = 4;
/**
* Represents custom blending.
*
* @type {number}
* @constant
*/
const CustomBlending = 5;
/**
* A `source + destination` blending equation.
*
* @type {number}
* @constant
*/
const AddEquation = 100;
/**
* A `source - destination` blending equation.
*
* @type {number}
* @constant
*/
const SubtractEquation = 101;
/**
* A `destination - source` blending equation.
*
* @type {number}
* @constant
*/
const ReverseSubtractEquation = 102;
/**
* A blend equation that uses the minimum of source and destination.
*
* @type {number}
* @constant
*/
const MinEquation = 103;
/**
* A blend equation that uses the maximum of source and destination.
*
* @type {number}
* @constant
*/
const MaxEquation = 104;
/**
* Multiplies all colors by `0`.
*
* @type {number}
* @constant
*/
const ZeroFactor = 200;
/**
* Multiplies all colors by `1`.
*
* @type {number}
* @constant
*/
const OneFactor = 201;
/**
* Multiplies all colors by the source colors.
*
* @type {number}
* @constant
*/
const SrcColorFactor = 202;
/**
* Multiplies all colors by `1` minus each source color.
*
* @type {number}
* @constant
*/
const OneMinusSrcColorFactor = 203;
/**
* Multiplies all colors by the source alpha value.
*
* @type {number}
* @constant
*/
const SrcAlphaFactor = 204;
/**
* Multiplies all colors by 1 minus the source alpha value.
*
* @type {number}
* @constant
*/
const OneMinusSrcAlphaFactor = 205;
/**
* Multiplies all colors by the destination alpha value.
*
* @type {number}
* @constant
*/
const DstAlphaFactor = 206;
/**
* Multiplies all colors by `1` minus the destination alpha value.
*
* @type {number}
* @constant
*/
const OneMinusDstAlphaFactor = 207;
/**
* Multiplies all colors by the destination color.
*
* @type {number}
* @constant
*/
const DstColorFactor = 208;
/**
* Multiplies all colors by `1` minus each destination color.
*
* @type {number}
* @constant
*/
const OneMinusDstColorFactor = 209;
/**
* Multiplies the RGB colors by the smaller of either the source alpha
* value or the value of `1` minus the destination alpha value. The alpha
* value is multiplied by `1`.
*
* @type {number}
* @constant
*/
const SrcAlphaSaturateFactor = 210;
/**
* Multiplies all colors by a constant color.
*
* @type {number}
* @constant
*/
const ConstantColorFactor = 211;
/**
* Multiplies all colors by `1` minus a constant color.
*
* @type {number}
* @constant
*/
const OneMinusConstantColorFactor = 212;
/**
* Multiplies all colors by a constant alpha value.
*
* @type {number}
* @constant
*/
const ConstantAlphaFactor = 213;
/**
* Multiplies all colors by 1 minus a constant alpha value.
*
* @type {number}
* @constant
*/
const OneMinusConstantAlphaFactor = 214;
/**
* Never pass.
*
* @type {number}
* @constant
*/
const NeverDepth = 0;
/**
* Always pass.
*
* @type {number}
* @constant
*/
const AlwaysDepth = 1;
/**
* Pass if the incoming value is less than the depth buffer value.
*
* @type {number}
* @constant
*/
const LessDepth = 2;
/**
* Pass if the incoming value is less than or equal to the depth buffer value.
*
* @type {number}
* @constant
*/
const LessEqualDepth = 3;
/**
* Pass if the incoming value equals the depth buffer value.
*
* @type {number}
* @constant
*/
const EqualDepth = 4;
/**
* Pass if the incoming value is greater than or equal to the depth buffer value.
*
* @type {number}
* @constant
*/
const GreaterEqualDepth = 5;
/**
* Pass if the incoming value is greater than the depth buffer value.
*
* @type {number}
* @constant
*/
const GreaterDepth = 6;
/**
* Pass if the incoming value is not equal to the depth buffer value.
*
* @type {number}
* @constant
*/
const NotEqualDepth = 7;
/**
* Multiplies the environment map color with the surface color.
*
* @type {number}
* @constant
*/
const MultiplyOperation = 0;
/**
* Uses reflectivity to blend between the two colors.
*
* @type {number}
* @constant
*/
const MixOperation = 1;
/**
* Adds the two colors.
*
* @type {number}
* @constant
*/
const AddOperation = 2;
/**
* No tone mapping is applied.
*
* @type {number}
* @constant
*/
const NoToneMapping = 0;
/**
* Linear tone mapping.
*
* @type {number}
* @constant
*/
const LinearToneMapping = 1;
/**
* Reinhard tone mapping.
*
* @type {number}
* @constant
*/
const ReinhardToneMapping = 2;
/**
* Cineon tone mapping.
*
* @type {number}
* @constant
*/
const CineonToneMapping = 3;
/**
* ACES Filmic tone mapping.
*
* @type {number}
* @constant
*/
const ACESFilmicToneMapping = 4;
/**
* Custom tone mapping.
*
* Expects a custom implementation by modifying shader code of the material's fragment shader.
*
* @type {number}
* @constant
*/
const CustomToneMapping = 5;
/**
* AgX tone mapping.
*
* @type {number}
* @constant
*/
const AgXToneMapping = 6;
/**
* Neutral tone mapping.
*
* Implementation based on the Khronos 3D Commerce Group standard tone mapping.
*
* @type {number}
* @constant
*/
const NeutralToneMapping = 7;
/**
* Maps textures using the geometry's UV coordinates.
*
* @type {number}
* @constant
*/
const UVMapping = 300;
/**
* Reflection mapping for cube textures.
*
* @type {number}
* @constant
*/
const CubeReflectionMapping = 301;
/**
* Refraction mapping for cube textures.
*
* @type {number}
* @constant
*/
const CubeRefractionMapping = 302;
/**
* Reflection mapping for equirectangular textures.
*
* @type {number}
* @constant
*/
const EquirectangularReflectionMapping = 303;
/**
* Refraction mapping for equirectangular textures.
*
* @type {number}
* @constant
*/
const EquirectangularRefractionMapping = 304;
/**
* Reflection mapping for PMREM textures.
*
* @type {number}
* @constant
*/
const CubeUVReflectionMapping = 306;
/**
* The texture will simply repeat to infinity.
*
* @type {number}
* @constant
*/
const RepeatWrapping = 1000;
/**
* The last pixel of the texture stretches to the edge of the mesh.
*
* @type {number}
* @constant
*/
const ClampToEdgeWrapping = 1001;
/**
* The texture will repeats to infinity, mirroring on each repeat.
*
* @type {number}
* @constant
*/
const MirroredRepeatWrapping = 1002;
/**
* Returns the value of the texture element that is nearest (in Manhattan distance)
* to the specified texture coordinates.
*
* @type {number}
* @constant
*/
const NearestFilter = 1003;
/**
* Chooses the mipmap that most closely matches the size of the pixel being textured
* and uses the `NearestFilter` criterion (the texel nearest to the center of the pixel)
* to produce a texture value.
*
* @type {number}
* @constant
*/
const NearestMipmapNearestFilter = 1004;
/**
* Chooses the two mipmaps that most closely match the size of the pixel being textured and
* uses the `NearestFilter` criterion to produce a texture value from each mipmap.
* The final texture value is a weighted average of those two values.
*
* @type {number}
* @constant
*/
const NearestMipmapLinearFilter = 1005;
/**
* Returns the weighted average of the four texture elements that are closest to the specified
* texture coordinates, and can include items wrapped or repeated from other parts of a texture,
* depending on the values of `wrapS` and `wrapT`, and on the exact mapping.
*
* @type {number}
* @constant
*/
const LinearFilter = 1006;
/**
* Chooses the mipmap that most closely matches the size of the pixel being textured and uses
* the `LinearFilter` criterion (a weighted average of the four texels that are closest to the
* center of the pixel) to produce a texture value.
*
* @type {number}
* @constant
*/
const LinearMipmapNearestFilter = 1007;
/**
* Chooses the two mipmaps that most closely match the size of the pixel being textured and uses
* the `LinearFilter` criterion to produce a texture value from each mipmap. The final texture value
* is a weighted average of those two values.
*
* @type {number}
* @constant
*/
const LinearMipmapLinearFilter = 1008;
/**
* An unsigned byte data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedByteType = 1009;
/**
* A byte data type for textures.
*
* @type {number}
* @constant
*/
const ByteType = 1010;
/**
* A short data type for textures.
*
* @type {number}
* @constant
*/
const ShortType = 1011;
/**
* An unsigned short data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedShortType = 1012;
/**
* An int data type for textures.
*
* @type {number}
* @constant
*/
const IntType = 1013;
/**
* An unsigned int data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedIntType = 1014;
/**
* A float data type for textures.
*
* @type {number}
* @constant
*/
const FloatType = 1015;
/**
* A half float data type for textures.
*
* @type {number}
* @constant
*/
const HalfFloatType = 1016;
/**
* An unsigned short 4_4_4_4 (packed) data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedShort4444Type = 1017;
/**
* An unsigned short 5_5_5_1 (packed) data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedShort5551Type = 1018;
/**
* An unsigned int 24_8 data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedInt248Type = 1020;
/**
* An unsigned int 5_9_9_9 (packed) data type for textures.
*
* @type {number}
* @constant
*/
const UnsignedInt5999Type = 35902;
/**
* Discards the red, green and blue components and reads just the alpha component.
*
* @type {number}
* @constant
*/
const AlphaFormat = 1021;
/**
* Discards the alpha component and reads the red, green and blue component.
*
* @type {number}
* @constant
*/
const RGBFormat = 1022;
/**
* Reads the red, green, blue and alpha components.
*
* @type {number}
* @constant
*/
const RGBAFormat = 1023;
/**
* Reads each element as a single depth value, converts it to floating point, and clamps to the range `[0,1]`.
*
* @type {number}
* @constant
*/
const DepthFormat = 1026;
/**
* Reads each element is a pair of depth and stencil values. The depth component of the pair is interpreted as
* in `DepthFormat`. The stencil component is interpreted based on the depth + stencil internal format.
*
* @type {number}
* @constant
*/
const DepthStencilFormat = 1027;
/**
* Discards the green, blue and alpha components and reads just the red component.
*
* @type {number}
* @constant
*/
const RedFormat = 1028;
/**
* Discards the green, blue and alpha components and reads just the red component. The texels are read as integers instead of floating point.
*
* @type {number}
* @constant
*/
const RedIntegerFormat = 1029;
/**
* Discards the alpha, and blue components and reads the red, and green components.
*
* @type {number}
* @constant
*/
const RGFormat = 1030;
/**
* Discards the alpha, and blue components and reads the red, and green components. The texels are read as integers instead of floating point.
*
* @type {number}
* @constant
*/
const RGIntegerFormat = 1031;
/**
* Discards the alpha component and reads the red, green and blue component. The texels are read as integers instead of floating point.
*
* @type {number}
* @constant
*/
const RGBIntegerFormat = 1032;
/**
* Reads the red, green, blue and alpha components. The texels are read as integers instead of floating point.
*
* @type {number}
* @constant
*/
const RGBAIntegerFormat = 1033;
/**
* A DXT1-compressed image in an RGB image format.
*
* @type {number}
* @constant
*/
const RGB_S3TC_DXT1_Format = 33776;
/**
* A DXT1-compressed image in an RGB image format with a simple on/off alpha value.
*
* @type {number}
* @constant
*/
const RGBA_S3TC_DXT1_Format = 33777;
/**
* A DXT3-compressed image in an RGBA image format. Compared to a 32-bit RGBA texture, it offers 4:1 compression.
*
* @type {number}
* @constant
*/
const RGBA_S3TC_DXT3_Format = 33778;
/**
* A DXT5-compressed image in an RGBA image format. It also provides a 4:1 compression, but differs to the DXT3
* compression in how the alpha compression is done.
*
* @type {number}
* @constant
*/
const RGBA_S3TC_DXT5_Format = 33779;
/**
* PVRTC RGB compression in 4-bit mode. One block for each 4×4 pixels.
*
* @type {number}
* @constant
*/
const RGB_PVRTC_4BPPV1_Format = 35840;
/**
* PVRTC RGB compression in 2-bit mode. One block for each 8×4 pixels.
*
* @type {number}
* @constant
*/
const RGB_PVRTC_2BPPV1_Format = 35841;
/**
* PVRTC RGBA compression in 4-bit mode. One block for each 4×4 pixels.
*
* @type {number}
* @constant
*/
const RGBA_PVRTC_4BPPV1_Format = 35842;
/**
* PVRTC RGBA compression in 2-bit mode. One block for each 8×4 pixels.
*
* @type {number}
* @constant
*/
const RGBA_PVRTC_2BPPV1_Format = 35843;
/**
* ETC1 RGB format.
*
* @type {number}
* @constant
*/
const RGB_ETC1_Format = 36196;
/**
* ETC2 RGB format.
*
* @type {number}
* @constant
*/
const RGB_ETC2_Format = 37492;
/**
* ETC2 RGBA format.
*
* @type {number}
* @constant
*/
const RGBA_ETC2_EAC_Format = 37496;
/**
* ASTC RGBA 4x4 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_4x4_Format = 37808;
/**
* ASTC RGBA 5x4 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_5x4_Format = 37809;
/**
* ASTC RGBA 5x5 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_5x5_Format = 37810;
/**
* ASTC RGBA 6x5 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_6x5_Format = 37811;
/**
* ASTC RGBA 6x6 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_6x6_Format = 37812;
/**
* ASTC RGBA 8x5 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_8x5_Format = 37813;
/**
* ASTC RGBA 8x6 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_8x6_Format = 37814;
/**
* ASTC RGBA 8x8 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_8x8_Format = 37815;
/**
* ASTC RGBA 10x5 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_10x5_Format = 37816;
/**
* ASTC RGBA 10x6 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_10x6_Format = 37817;
/**
* ASTC RGBA 10x8 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_10x8_Format = 37818;
/**
* ASTC RGBA 10x10 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_10x10_Format = 37819;
/**
* ASTC RGBA 12x10 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_12x10_Format = 37820;
/**
* ASTC RGBA 12x12 format.
*
* @type {number}
* @constant
*/
const RGBA_ASTC_12x12_Format = 37821;
/**
* BPTC RGBA format.
*
* @type {number}
* @constant
*/
const RGBA_BPTC_Format = 36492;
/**
* BPTC Signed RGB format.
*
* @type {number}
* @constant
*/
const RGB_BPTC_SIGNED_Format = 36494;
/**
* BPTC Unsigned RGB format.
*
* @type {number}
* @constant
*/
const RGB_BPTC_UNSIGNED_Format = 36495;
/**
* RGTC1 Red format.
*
* @type {number}
* @constant
*/
const RED_RGTC1_Format = 36283;
/**
* RGTC1 Signed Red format.
*
* @type {number}
* @constant
*/
const SIGNED_RED_RGTC1_Format = 36284;
/**
* RGTC2 Red Green format.
*
* @type {number}
* @constant
*/
const RED_GREEN_RGTC2_Format = 36285;
/**
* RGTC2 Signed Red Green format.
*
* @type {number}
* @constant
*/
const SIGNED_RED_GREEN_RGTC2_Format = 36286;
/**
* Basic depth packing.
*
* @type {number}
* @constant
*/
const BasicDepthPacking = 3200;
/**
* A depth value is packed into 32 bit RGBA.
*
* @type {number}
* @constant
*/
const RGBADepthPacking = 3201;
/**
* Normal information is relative to the underlying surface.
*
* @type {number}
* @constant
*/
const TangentSpaceNormalMap = 0;
/**
* Normal information is relative to the object orientation.
*
* @type {number}
* @constant
*/
const ObjectSpaceNormalMap = 1;
// Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available.
/**
* No color space.
*
* @type {string}
* @constant
*/
const NoColorSpace = '';
/**
* sRGB color space.
*
* @type {string}
* @constant
*/
const SRGBColorSpace = 'srgb';
/**
* sRGB-linear color space.
*
* @type {string}
* @constant
*/
const LinearSRGBColorSpace = 'srgb-linear';
/**
* Linear transfer function.
*
* @type {string}
* @constant
*/
const LinearTransfer = 'linear';
/**
* sRGB transfer function.
*
* @type {string}
* @constant
*/
const SRGBTransfer = 'srgb';
/**
* Sets the stencil buffer value to `0`.
*
* @type {number}
* @constant
*/
const ZeroStencilOp = 0;
/**
* Keeps the current value.
*
* @type {number}
* @constant
*/
const KeepStencilOp = 7680;
/**
* Sets the stencil buffer value to the specified reference value.
*
* @type {number}
* @constant
*/
const ReplaceStencilOp = 7681;
/**
* Increments the current stencil buffer value. Clamps to the maximum representable unsigned value.
*
* @type {number}
* @constant
*/
const IncrementStencilOp = 7682;
/**
* Decrements the current stencil buffer value. Clamps to `0`.
*
* @type {number}
* @constant
*/
const DecrementStencilOp = 7683;
/**
* Increments the current stencil buffer value. Wraps stencil buffer value to zero when incrementing
* the maximum representable unsigned value.
*
* @type {number}
* @constant
*/
const IncrementWrapStencilOp = 34055;
/**
* Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum representable
* unsigned value when decrementing a stencil buffer value of `0`.
*
* @type {number}
* @constant
*/
const DecrementWrapStencilOp = 34056;
/**
* Inverts the current stencil buffer value bitwise.
*
* @type {number}
* @constant
*/
const InvertStencilOp = 5386;
/**
* Will never return true.
*
* @type {number}
* @constant
*/
const NeverStencilFunc = 512;
/**
* Will return true if the stencil reference value is less than the current stencil value.
*
* @type {number}
* @constant
*/
const LessStencilFunc = 513;
/**
* Will return true if the stencil reference value is equal to the current stencil value.
*
* @type {number}
* @constant
*/
const EqualStencilFunc = 514;
/**
* Will return true if the stencil reference value is less than or equal to the current stencil value.
*
* @type {number}
* @constant
*/
const LessEqualStencilFunc = 515;
/**
* Will return true if the stencil reference value is greater than the current stencil value.
*
* @type {number}
* @constant
*/
const GreaterStencilFunc = 516;
/**
* Will return true if the stencil reference value is not equal to the current stencil value.
*
* @type {number}
* @constant
*/
const NotEqualStencilFunc = 517;
/**
* Will return true if the stencil reference value is greater than or equal to the current stencil value.
*
* @type {number}
* @constant
*/
const GreaterEqualStencilFunc = 518;
/**
* Will always return true.
*
* @type {number}
* @constant
*/
const AlwaysStencilFunc = 519;
/**
* Never pass.
*
* @type {number}
* @constant
*/
const NeverCompare = 512;
/**
* Pass if the incoming value is less than the texture value.
*
* @type {number}
* @constant
*/
const LessCompare = 513;
/**
* Pass if the incoming value equals the texture value.
*
* @type {number}
* @constant
*/
const EqualCompare = 514;
/**
* Pass if the incoming value is less than or equal to the texture value.
*
* @type {number}
* @constant
*/
const LessEqualCompare = 515;
/**
* Pass if the incoming value is greater than the texture value.
*
* @type {number}
* @constant
*/
const GreaterCompare = 516;
/**
* Pass if the incoming value is not equal to the texture value.
*
* @type {number}
* @constant
*/
const NotEqualCompare = 517;
/**
* Pass if the incoming value is greater than or equal to the texture value.
*
* @type {number}
* @constant
*/
const GreaterEqualCompare = 518;
/**
* Always pass.
*
* @type {number}
* @constant
*/
const AlwaysCompare = 519;
/**
* The contents are intended to be specified once by the application, and used many
* times as the source for drawing and image specification commands.
*
* @type {number}
* @constant
*/
const StaticDrawUsage = 35044;
/**
* The contents are intended to be respecified repeatedly by the application, and
* used many times as the source for drawing and image specification commands.
*
* @type {number}
* @constant
*/
const DynamicDrawUsage = 35048;
/**
* GLSL 3 shader code.
*
* @type {string}
* @constant
*/
const GLSL3 = '300 es';
/**
* WebGL coordinate system.
*
* @type {number}
* @constant
*/
const WebGLCoordinateSystem = 2000;
/**
* WebGPU coordinate system.
*
* @type {number}
* @constant
*/
const WebGPUCoordinateSystem = 2001;
/**
* This type represents mouse buttons and interaction types in context of controls.
*
* @typedef {Object} ConstantsMouse
* @property {number} MIDDLE - The left mouse button.
* @property {number} LEFT - The middle mouse button.
* @property {number} RIGHT - The right mouse button.
* @property {number} ROTATE - A rotate interaction.
* @property {number} DOLLY - A dolly interaction.
* @property {number} PAN - A pan interaction.
**/
/**
* This type represents touch interaction types in context of controls.
*
* @typedef {Object} ConstantsTouch
* @property {number} ROTATE - A rotate interaction.
* @property {number} PAN - A pan interaction.
* @property {number} DOLLY_PAN - The dolly-pan interaction.
* @property {number} DOLLY_ROTATE - A dolly-rotate interaction.
**/
/**
* This type represents the different timestamp query types.
*
* @typedef {Object} ConstantsTimestampQuery
* @property {string} COMPUTE - A `compute` timestamp query.
* @property {string} RENDER - A `render` timestamp query.
**/
/**
* Represents the different interpolation sampling types.
*
* @typedef {Object} ConstantsInterpolationSamplingType
* @property {string} PERSPECTIVE - Perspective-correct interpolation.
* @property {string} LINEAR - Linear interpolation.
* @property {string} FLAT - Flat interpolation.
*/
/**
* Represents the different interpolation sampling modes.
*
* @typedef {Object} ConstantsInterpolationSamplingMode
* @property {string} NORMAL - Normal sampling mode.
* @property {string} CENTROID - Centroid sampling mode.
* @property {string} SAMPLE - Sample-specific sampling mode.
* @property {string} FLAT_FIRST - Flat interpolation using the first vertex.
* @property {string} FLAT_EITHER - Flat interpolation using either vertex.
*/
/**
* This modules allows to dispatch event objects on custom JavaScript objects.
*
* Main repository: [eventdispatcher.js]{@link https://github.com/mrdoob/eventdispatcher.js/}
*
* Code Example:
* ```js
* class Car extends EventDispatcher {
* start() {
* this.dispatchEvent( { type: 'start', message: 'vroom vroom!' } );
* }
*};
*
* // Using events with the custom object
* const car = new Car();
* car.addEventListener( 'start', function ( event ) {
* alert( event.message );
* } );
*
* car.start();
* ```
*/
class EventDispatcher {
/**
* Adds the given event listener to the given event type.
*
* @param {string} type - The type of event to listen to.
* @param {Function} listener - The function that gets called when the event is fired.
*/
addEventListener( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
const listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === -1 ) {
listeners[ type ].push( listener );
}
}
/**
* Returns `true` if the given event listener has been added to the given event type.
*
* @param {string} type - The type of event.
* @param {Function} listener - The listener to check.
* @return {boolean} Whether the given event listener has been added to the given event type.
*/
hasEventListener( type, listener ) {
const listeners = this._listeners;
if ( listeners === undefined ) return false;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== -1;
}
/**
* Removes the given event listener from the given event type.
*
* @param {string} type - The type of event.
* @param {Function} listener - The listener to remove.
*/
removeEventListener( type, listener ) {
const listeners = this._listeners;
if ( listeners === undefined ) return;
const listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
const index = listenerArray.indexOf( listener );
if ( index !== -1 ) {
listenerArray.splice( index, 1 );
}
}
}
/**
* Dispatches an event object.
*
* @param {Object} event - The event that gets fired.
*/
dispatchEvent( event ) {
const listeners = this._listeners;
if ( listeners === undefined ) return;
const listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
// Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice( 0 );
for ( let i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
event.target = null;
}
}
}
const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ];
let _seed = 1234567;
const DEG2RAD = Math.PI / 180;
const RAD2DEG = 180 / Math.PI;
/**
* Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier}
* (universally unique identifier).
*
* @return {string} The UUID.
*/
function generateUUID() {
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
// .toLowerCase() here flattens concatenated strings to save heap memory space.
return uuid.toLowerCase();
}
/**
* Clamps the given value between min and max.
*
* @param {number} value - The value to clamp.
* @param {number} min - The min value.
* @param {number} max - The max value.
* @return {number} The clamped value.
*/
function clamp$1( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
}
/**
* Computes the Euclidean modulo of the given parameters that
* is `( ( n % m ) + m ) % m`.
*
* @param {number} n - The first parameter.
* @param {number} m - The second parameter.
* @return {number} The Euclidean modulo.
*/
function euclideanModulo( n, m ) {
// https://en.wikipedia.org/wiki/Modulo_operation
return ( ( n % m ) + m ) % m;
}
/**
* Performs a linear mapping from range `<a1, a2>` to range `<b1, b2>`
* for the given value.
*
* @param {number} x - The value to be mapped.
* @param {number} a1 - Minimum value for range A.
* @param {number} a2 - Maximum value for range A.
* @param {number} b1 - Minimum value for range B.
* @param {number} b2 - Maximum value for range B.
* @return {number} The mapped value.
*/
function mapLinear( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
}
/**
* Returns the percentage in the closed interval `[0, 1]` of the given value
* between the start and end point.
*
* @param {number} x - The start point
* @param {number} y - The end point.
* @param {number} value - A value between start and end.
* @return {number} The interpolation factor.
*/
function inverseLerp( x, y, value ) {
// https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
if ( x !== y ) {
return ( value - x ) / ( y - x );
} else {
return 0;
}
}
/**
* Returns a value linearly interpolated from two known points based on the given interval -
* `t = 0` will return `x` and `t = 1` will return `y`.
*
* @param {number} x - The start point
* @param {number} y - The end point.
* @param {number} t - The interpolation factor in the closed interval `[0, 1]`.
* @return {number} The interpolated value.
*/
function lerp( x, y, t ) {
return ( 1 - t ) * x + t * y;
}
/**
* Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta
* time to maintain frame rate independent movement. For details, see
* [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}.
*
* @param {number} x - The current point.
* @param {number} y - The target point.
* @param {number} lambda - A higher lambda value will make the movement more sudden,
* and a lower value will make the movement more gradual.
* @param {number} dt - Delta time in seconds.
* @return {number} The interpolated value.
*/
function damp( x, y, lambda, dt ) {
return lerp( x, y, 1 - Math.exp( - lambda * dt ) );
}
/**
* Returns a value that alternates between `0` and the given `length` parameter.
*
* @param {number} x - The value to pingpong.
* @param {number} [length=1] - The positive value the function will pingpong to.
* @return {number} The alternated value.
*/
function pingpong( x, length = 1 ) {
// https://www.desmos.com/calculator/vcsjnyz7x4
return length - Math.abs( euclideanModulo( x, length * 2 ) - length );
}
/**
* Returns a value in the range `[0,1]` that represents the percentage that `x` has
* moved between `min` and `max`, but smoothed or slowed down the closer `x` is to
* the `min` and `max`.
*
* See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details.
*
* @param {number} x - The value to evaluate based on its position between min and max.
* @param {number} min - The min value. Any x value below min will be `0`.
* @param {number} max - The max value. Any x value above max will be `1`.
* @return {number} The alternated value.
*/
function smoothstep$1( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
}
/**
* A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations}
* that has zero 1st and 2nd order derivatives at x=0 and x=1.
*
* @param {number} x - The value to evaluate based on its position between min and max.
* @param {number} min - The min value. Any x value below min will be `0`.
* @param {number} max - The max value. Any x value above max will be `1`.
* @return {number} The alternated value.
*/
function smootherstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
}
/**
* Returns a random integer from `<low, high>` interval.
*
* @param {number} low - The lower value boundary.
* @param {number} high - The upper value boundary
* @return {number} A random integer.
*/
function randInt( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
}
/**
* Returns a random float from `<low, high>` interval.
*
* @param {number} low - The lower value boundary.
* @param {number} high - The upper value boundary
* @return {number} A random float.
*/
function randFloat( low, high ) {
return low + Math.random() * ( high - low );
}
/**
* Returns a random integer from `<-range/2, range/2>` interval.
*
* @param {number} range - Defines the value range.
* @return {number} A random float.
*/
function randFloatSpread( range ) {
return range * ( 0.5 - Math.random() );
}
/**
* Returns a deterministic pseudo-random float in the interval `[0, 1]`.
*
* @param {number} [s] - The integer seed.
* @return {number} A random float.
*/
function seededRandom( s ) {
if ( s !== undefined ) _seed = s;
// Mulberry32 generator
let t = _seed += 0x6D2B79F5;
t = Math.imul( t ^ t >>> 15, t | 1 );
t ^= t + Math.imul( t ^ t >>> 7, t | 61 );
return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296;
}