UNPKG

rbtree-ts

Version:

A sorted list of key-value pairs in a fast, typed in-memory B+ tree with a powerful API.

1,388 lines (1,289 loc) 55.2 kB
// B+ tree by David Piepgrass. License: MIT export { ISet, ISetF, ISetSink, ISetSource, ISortedMap, ISortedMapF, ISortedMapSource, ISortedSet, ISortedSetF, ISortedSetSource } from "../types/interfaces"; export type EditRangeResult<V, R = number> = { value?: V; break?: R; delete?: boolean; }; type index = number; // Informative microbenchmarks & stuff: // http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational) // https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties) // http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff) // https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers) // https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers) // https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object) // https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign) // https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest) // https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge) // https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant) // https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers) // Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest. // Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html: // - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently. // - Don't read outside bounds of an array (it scans prototype chain). // - Small integer arrays are stored differently from doubles // - Adding non-numbers to an array deoptimizes it permanently into a general array // - Objects can be used like arrays (e.g. have length property) but are slower // - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements /** Compares two numbers, strings, arrays of numbers/strings, Dates, * or objects that have a valueOf() method returning a number or string. * Optimized for numbers. Returns 1 if a>b, -1 if a<b, and 0 if a===b. */ export function defaultComparator(a: any, b: any) { var c = a - b; if (c === c) return c; // a & b are number // General case (c is NaN): string / arrays / Date / incomparable things if (a) a = a.valueOf(); if (b) b = b.valueOf(); return a < b ? -1 : a > b ? 1 : a == b ? 0 : c; } /** * A reasonably fast collection of key-value pairs with a powerful API. * Largely compatible with the standard Map. BTree is a B+ tree data structure, * so the collection is sorted by key. * * B+ trees tend to use memory more efficiently than hashtables such as the * standard Map, especially when the collection contains a large number of * items. However, maintaining the sort order makes them modestly slower: * O(log size) rather than O(1). This B+ tree implementation supports O(1) * fast cloning. It also supports freeze(), which can be used to ensure that * a BTree is not changed accidentally. * * Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of * c(key,value), in contrast to other methods such as set() and entries() * which put the key first. I can only assume that the order was reversed on * the theory that users would usually want to examine values and ignore keys. * BTree's forEach() therefore works the same way, but a second method * `.forEachPair((key,value)=>{...})` is provided which sends you the key * first and the value second; this method is slightly faster because it is * the "native" for-each method for this class. * * Out of the box, BTree supports keys that are numbers, strings, arrays of * numbers/strings, Date, and objects that have a valueOf() method returning a * number or string. Other data types, such as arrays of Date or custom * objects, require a custom comparator, which you must pass as the second * argument to the constructor (the first argument is an optional list of * initial items). Symbols cannot be used as keys because they are unordered * (one Symbol is never "greater" or "less" than another). * * @example * Given a {name: string, age: number} object, you can create a tree sorted by * name and then by age like this: * * var tree = new BTree(undefined, (a, b) => { * if (a.name > b.name) * return 1; // Return a number >0 when a > b * else if (a.name < b.name) * return -1; // Return a number <0 when a < b * else // names are equal (or incomparable) * return a.age - b.age; // Return >0 when a.age > b.age * }); * * tree.set({name:"Bill", age:17}, "happy"); * tree.set({name:"Fran", age:40}, "busy & stressed"); * tree.set({name:"Bill", age:55}, "recently laid off"); * tree.forEachPair((k, v) => { * console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`); * }); * * @description * The "range" methods (`forEach, forRange, editRange`) will return the number * of elements that were scanned. In addition, the callback can return {break:R} * to stop early and return R from the outer function. * * - TODO: Test performance of preallocating values array at max size * - TODO: Add fast initialization when a sorted array is provided to constructor * * For more documentation see https://github.com/qwertie/btree-typescript * * Are you a C# developer? You might like the similar data structures I made for C#: * BDictionary, BList, etc. See http://core.loyc.net/collections/ * * @author David Piepgrass */ export default class BTree<K = any, V = any> { private _root: BNode<K, V> = EmptyLeaf as BNode<K, V>; _size: number = 0; _maxNodeSize: number; _compare: (a: K, b: K) => number; /** * Initializes an empty B+ tree. * @param compare Custom function to compare pairs of elements in the tree. * This is not required for numbers, strings and arrays of numbers/strings. * @param entries A set of key-value pairs to initialize the tree * @param maxNodeSize Branching factor (maximum items or children per node) * Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256. */ public constructor( compare?: (a: K, b: K) => number, maxNodeSize?: number, entries?: [K, V][] ) { this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32; this._compare = compare || defaultComparator; if (entries) this.setPairs(entries); } // ES6 Map<K,V> methods /////////////////////////////////////////////////// /** Gets the number of key-value pairs in the tree. */ get size() { return this._size; } /** Gets the number of key-value pairs in the tree. */ get length() { return this._size; } /** Returns true iff the tree contains no key-value pairs. */ get isEmpty() { return this._size === 0; } /** Releases the tree so that its size is 0. */ clear() { this._root = EmptyLeaf as BNode<K, V>; this._size = 0; } forEach( callback: (v: V, k: K, tree: BTree<K, V>) => void, thisArg?: any ): number; /** Runs a function for each key-value pair, in order from smallest to * largest key. For compatibility with ES6 Map, the argument order to * the callback is backwards: value first, then key. Call forEachPair * instead to receive the key as the first argument. * @param thisArg If provided, this parameter is assigned as the `this` * value for each callback. * @returns the number of values that were sent to the callback, * or the R value if the callback returned {break:R}. */ forEach<R = number>( callback: (v: V, k: K, tree: BTree<K, V>) => { break?: R } | void, thisArg?: any ): R | number { if (thisArg !== undefined) callback = callback.bind(thisArg); return this.forEachPair((k, v) => callback(v, k, this)); } /** Runs a function for each key-value pair, in order from smallest to * largest key. The callback can return {break:R} (where R is any value * except undefined) to stop immediately and return R from forEachPair. * @param onFound A function that is called for each key-value pair. This * function can return {break:R} to stop early with result R. * The reason that you must return {break:R} instead of simply R * itself is for consistency with editRange(), which allows * multiple actions, not just breaking. * @param initialCounter This is the value of the third argument of * `onFound` the first time it is called. The counter increases * by one each time `onFound` is called. Default value: 0 * @returns the number of pairs sent to the callback (plus initialCounter, * if you provided one). If the callback returned {break:R} then * the R value is returned instead. */ forEachPair<R = number>( callback: (k: K, v: V, counter: number) => { break?: R } | void, initialCounter?: number ): R | number { var low = this.minKey(), high = this.maxKey(); return this.forRange(low!, high!, true, callback, initialCounter); } /** * Finds a pair in the tree and returns the associated value. * @param defaultValue a value to return if the key was not found. * @returns the value, or defaultValue if the key was not found. * @description Computational complexity: O(log size) */ get(key: K, defaultValue?: V): V | undefined { return this._root.get(key, defaultValue, this); } /** * Adds or overwrites a key-value pair in the B+ tree. * @param key the key is used to determine the sort order of * data in the tree. * @param value data to associate with the key (optional) * @param overwrite Whether to overwrite an existing key-value pair * (default: true). If this is false and there is an existing * key-value pair then this method has no effect. * @returns true if a new key-value pair was added. * @description Computational complexity: O(log size) * Note: when overwriting a previous entry, the key is updated * as well as the value. This has no effect unless the new key * has data that does not affect its sort order. */ set(key: K, value: V, overwrite?: boolean): boolean { if (this._root.isShared) this._root = this._root.clone(); var result = this._root.set(key, value, overwrite, this); if (result === true || result === false) return result; // Root node has split, so create a new root node. this._root = new BNodeInternal<K, V>([this._root, result]); return true; } /** * Returns true if the key exists in the B+ tree, false if not. * Use get() for best performance; use has() if you need to * distinguish between "undefined value" and "key not present". * @param key Key to detect * @description Computational complexity: O(log size) */ has(key: K): boolean { return this.forRange(key, key, true, undefined) !== 0; } /** * Removes a single key-value pair from the B+ tree. * @param key Key to find * @returns true if a pair was found and removed, false otherwise. * @description Computational complexity: O(log size) */ delete(key: K): boolean { return this.editRange(key, key, true, DeleteRange) !== 0; } // Clone-mutators ///////////////////////////////////////////////////////// /** Returns a copy of the tree with the specified key set (the value is undefined). */ with(key: K): BTree<K, V | undefined>; /** Returns a copy of the tree with the specified key-value pair set. */ with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K, V | V2>; with<V2>( key: K, value?: V2, overwrite?: boolean ): BTree<K, V | V2 | undefined> { let nu = this.clone() as BTree<K, V | V2 | undefined>; return nu.set(key, value, overwrite) || overwrite ? nu : this; } /** Returns a copy of the tree with the specified key-value pairs set. */ withPairs<V2>(pairs: [K, V | V2][], overwrite: boolean): BTree<K, V | V2> { let nu = this.clone() as BTree<K, V | V2>; return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this; } withKeys( keys: K[], returnThisIfUnchanged?: boolean ): BTree<K, V | undefined> { let nu = this.clone() as BTree<K, V | undefined>, changed = false; for (var i = 0; i < keys.length; i++) changed = nu.set(keys[i], undefined, false) || changed; return returnThisIfUnchanged && !changed ? this : nu; } /** Returns a copy of the tree with the specified key removed. * @param returnThisIfUnchanged if true, returns this if the key didn't exist. * Performance note: due to the architecture of this class, node(s) leading * to where the key would have been stored are cloned even when the key * turns out not to exist and the collection is unchanged. */ without(key: K, returnThisIfUnchanged?: boolean): BTree<K, V> { return this.withoutRange(key, key, true, returnThisIfUnchanged); } /** Returns a copy of the tree with the specified keys removed. * @param returnThisIfUnchanged if true, returns this if none of the keys * existed. Performance note: due to the architecture of this class, * node(s) leading to where the key would have been stored are cloned * even when the key turns out not to exist. */ withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K, V> { let nu = this.clone(); return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this; } /** Returns a copy of the tree with the specified range of keys removed. */ withoutRange( low: K, high: K, includeHigh: boolean, returnThisIfUnchanged?: boolean ): BTree<K, V> { let nu = this.clone(); if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged) return this; return nu; } /** Returns a copy of the tree with pairs removed whenever the callback * function returns false. `where()` is a synonym for this method. */ filter( callback: (k: K, v: V, counter: number) => boolean, returnThisIfUnchanged?: boolean ): BTree<K, V> { var nu = this.greedyClone(); var del: any; nu.editAll((k, v, i) => { if (!callback(k, v, i)) return (del = Delete); }); if (!del && returnThisIfUnchanged) return this; return nu; } /** Returns a copy of the tree with all values altered by a callback function. */ mapValues<R>(callback: (v: V, k: K, counter: number) => R): BTree<K, R> { var tmp = {} as { value: R }; var nu = this.greedyClone(); nu.editAll((k, v, i) => { return (tmp.value = callback(v, k, i)), tmp as any; }); return (nu as any) as BTree<K, R>; } /** Performs a reduce operation like the `reduce` method of `Array`. * It is used to combine all pairs into a single value, or perform * conversions. `reduce` is best understood by example. For example, * `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys * together. It means "start with P=1, and for each pair multiply * it by the key in pair[0]". Another example would be converting * the tree to a Map (in this example, note that M.set returns M): * * var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map()) * * **Note**: the same array is sent to the callback on every iteration. */ reduce<R>( callback: ( previous: R, currentPair: [K, V], counter: number, tree: BTree<K, V> ) => R, initialValue: R ): R; reduce<R>( callback: ( previous: R | undefined, currentPair: [K, V], counter: number, tree: BTree<K, V> ) => R ): R | undefined; reduce<R>( callback: ( previous: R | undefined, currentPair: [K, V], counter: number, tree: BTree<K, V> ) => R, initialValue?: R ): R | undefined { let i = 0, p = initialValue; var it = this.entries(this.minKey(), ReusedArray), next; while (!(next = it.next()).done) p = callback(p, next.value, i++, this); return p; } // Iterator methods /////////////////////////////////////////////////////// /** Returns an iterator that provides items in order (ascending order if * the collection's comparator uses ascending order, as is the default.) * @param lowestKey First key to be iterated, or undefined to start at * minKey(). If the specified key doesn't exist then iteration * starts at the next higher key (according to the comparator). * @param reusedArray Optional array used repeatedly to store key-value * pairs, to avoid creating a new array on every iteration. */ entries(lowestKey?: K, reusedArray?: (K | V)[]): IterableIterator<[K, V]> { var info = this.findPath(lowestKey); if (info === undefined) return iterator<[K, V]>(); var { nodequeue, nodeindex, leaf } = info; var state = reusedArray !== undefined ? 1 : 0; var i = lowestKey === undefined ? -1 : leaf.indexOf(lowestKey, 0, this._compare) - 1; return iterator<[K, V]>(() => { jump: for (;;) { switch (state) { case 0: if (++i < leaf.keys.length) return { done: false, value: [leaf.keys[i], leaf.values[i]] }; state = 2; continue; case 1: if (++i < leaf.keys.length) { (reusedArray![0] = leaf.keys[i]), (reusedArray![1] = leaf.values[i]); return { done: false, value: reusedArray as [K, V] }; } state = 2; case 2: // Advance to the next leaf node for (var level = -1; ; ) { if (++level >= nodequeue.length) { state = 3; continue jump; } if (++nodeindex[level] < nodequeue[level].length) break; } for (; level > 0; level--) { nodequeue[level - 1] = (nodequeue[level][ nodeindex[level] ] as BNodeInternal<K, V>).children; nodeindex[level - 1] = 0; } leaf = nodequeue[0][nodeindex[0]]; i = -1; state = reusedArray !== undefined ? 1 : 0; continue; case 3: return { done: true, value: undefined }; } } }); } /** Returns an iterator that provides items in reversed order. * @param highestKey Key at which to start iterating, or undefined to * start at minKey(). If the specified key doesn't exist then iteration * starts at the next lower key (according to the comparator). * @param reusedArray Optional array used repeatedly to store key-value * pairs, to avoid creating a new array on every iteration. * @param skipHighest Iff this flag is true and the highestKey exists in the * collection, the pair matching highestKey is skipped, not iterated. */ entriesReversed( highestKey?: K, reusedArray?: (K | V)[], skipHighest?: boolean ): IterableIterator<[K, V]> { if ((highestKey = highestKey || this.maxKey()) === undefined) return iterator<[K, V]>(); // collection is empty var { nodequeue, nodeindex, leaf } = this.findPath(highestKey) || this.findPath(this.maxKey())!; check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!"); var i = leaf.indexOf(highestKey, 0, this._compare); if (!(skipHighest || this._compare(leaf.keys[i], highestKey) > 0)) i++; var state = reusedArray !== undefined ? 1 : 0; return iterator<[K, V]>(() => { jump: for (;;) { switch (state) { case 0: if (--i >= 0) return { done: false, value: [leaf.keys[i], leaf.values[i]] }; state = 2; continue; case 1: if (--i >= 0) { (reusedArray![0] = leaf.keys[i]), (reusedArray![1] = leaf.values[i]); return { done: false, value: reusedArray as [K, V] }; } state = 2; case 2: // Advance to the next leaf node for (var level = -1; ; ) { if (++level >= nodequeue.length) { state = 3; continue jump; } if (--nodeindex[level] >= 0) break; } for (; level > 0; level--) { nodequeue[level - 1] = (nodequeue[level][ nodeindex[level] ] as BNodeInternal<K, V>).children; nodeindex[level - 1] = nodequeue[level - 1].length - 1; } leaf = nodequeue[0][nodeindex[0]]; i = leaf.keys.length; state = reusedArray !== undefined ? 1 : 0; continue; case 3: return { done: true, value: undefined }; } } }); } /* Used by entries() and entriesReversed() to prepare to start iterating. * It develops a "node queue" for each non-leaf level of the tree. * Levels are numbered "bottom-up" so that level 0 is a list of leaf * nodes from a low-level non-leaf node. The queue at a given level L * consists of nodequeue[L] which is the children of a BNodeInternal, * and nodeindex[L], the current index within that child list, such * such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children. * (However inside this function the order is reversed.) */ private findPath( key?: K ): | { nodequeue: BNode<K, V>[][]; nodeindex: number[]; leaf: BNode<K, V> } | undefined { var nextnode = this._root; var nodequeue: BNode<K, V>[][], nodeindex: number[]; if (nextnode.isLeaf) { (nodequeue = EmptyArray), (nodeindex = EmptyArray); // avoid allocations } else { (nodequeue = []), (nodeindex = []); for (var d = 0; !nextnode.isLeaf; d++) { nodequeue[d] = (nextnode as BNodeInternal<K, V>).children; nodeindex[d] = key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare); if (nodeindex[d] >= nodequeue[d].length) return; // first key > maxKey() nextnode = nodequeue[d][nodeindex[d]]; } nodequeue.reverse(); nodeindex.reverse(); } return { nodequeue, nodeindex, leaf: nextnode }; } // Additional methods ///////////////////////////////////////////////////// /** Returns the maximum number of children/values before nodes will split. */ get maxNodeSize() { return this._maxNodeSize; } /** Gets the lowest key in the tree. Complexity: O(log size) */ minKey(): K | undefined { return this._root.minKey(); } /** Gets the highest key in the tree. Complexity: O(1) */ maxKey(): K | undefined { return this._root.maxKey(); } /** Quickly clones the tree by marking the root node as shared. * Both copies remain editable. When you modify either copy, any * nodes that are shared (or potentially shared) between the two * copies are cloned so that the changes do not affect other copies. * This is known as copy-on-write behavior, or "lazy copying". */ clone(): BTree<K, V> { this._root.isShared = true; var result = new BTree<K, V>(this._compare, this._maxNodeSize, undefined); result._root = this._root; result._size = this._size; return result; } /** Performs a greedy clone, immediately duplicating any nodes that are * not currently marked as shared, in order to avoid marking any nodes * as shared. * @param force Clone all nodes, even shared ones. */ greedyClone(force?: boolean): BTree<K, V> { var result = new BTree<K, V>(this._compare, this._maxNodeSize, undefined); result._root = this._root.greedyClone(force); result._size = this._size; return result; } /** Gets an array filled with the contents of the tree, sorted by key */ toArray(maxLength: number = 0x7fffffff): { key: K, data: V}[] { let min = this.minKey(), max = this.maxKey(); if (min !== undefined) return this.getRange(min, max!, true, maxLength).map(array => ({ key: array[0], data: array[1] })); return []; } /** Gets an array of all keys, sorted */ keysArray() { var results: K[] = []; this._root.forRange( this.minKey()!, this.maxKey()!, true, false, this, 0, (k, v) => { results.push(k); } ); return results; } /** Gets an array of all values, sorted by key */ valuesArray() { var results: V[] = []; this._root.forRange( this.minKey()!, this.maxKey()!, true, false, this, 0, (k, v) => { results.push(v); } ); return results; } /** Gets a string representing the tree's data based on toArray(). */ toString() { return this.toArray().toString(); } /** Stores a key-value pair only if the key doesn't already exist in the tree. * @returns true if a new key was added */ setIfNotPresent(key: K, value: V): boolean { return this.set(key, value, false); } /** Returns the next pair whose key is larger than the specified key (or undefined if there is none) */ nextHigherPair(key: K): [K, V] | undefined { var it = this.entries(key, ReusedArray); var r = it.next(); if (!r.done && this._compare(r.value[0], key) <= 0) r = it.next(); return r.value; } /** Returns the next key larger than the specified key (or undefined if there is none) */ nextHigherKey(key: K): K | undefined { var p = this.nextHigherPair(key); return p ? p[0] : p; } /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none) */ nextLowerPair(key: K): [K, V] | undefined { var it = this.entriesReversed(key, ReusedArray, true); return it.next().value; } /** Returns the next key smaller than the specified key (or undefined if there is none) */ nextLowerKey(key: K): K | undefined { var p = this.nextLowerPair(key); return p ? p[0] : p; } /** Edits the value associated with a key in the tree, if it already exists. * @returns true if the key existed, false if not. */ changeIfPresent(key: K, value: V): boolean { return this.editRange(key, key, true, (k, v) => ({ value })) !== 0; } /** * Builds an array of pairs from the specified range of keys, sorted by key. * Each returned pair is also an array: pair[0] is the key, pair[1] is the value. * @param low The first key in the array will be greater than or equal to `low`. * @param high This method returns when a key larger than this is reached. * @param includeHigh If the `high` key is present, its pair will be included * in the output if and only if this parameter is true. Note: if the * `low` key is present, it is always included in the output. * @param maxLength Length limit. getRange will stop scanning the tree when * the array reaches this size. * @description Computational complexity: O(result.length + log size) */ getRange( low: K, high: K, includeHigh?: boolean, maxLength: number = 0x3ffffff ): [K, V][] { var results: [K, V][] = []; this._root.forRange(low, high, includeHigh, false, this, 0, (k, v) => { results.push([k, v]); return results.length > maxLength ? Break : undefined; }); return results; } /** Adds all pairs from a list of key-value pairs. * @param pairs Pairs to add to this tree. If there are duplicate keys, * later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]] * associates 0 with 7.) * @param overwrite Whether to overwrite pairs that already exist (if false, * pairs[i] is ignored when the key pairs[i][0] already exists.) * @returns The number of pairs added to the collection. * @description Computational complexity: O(pairs.length * log(size + pairs.length)) */ setPairs(pairs: [K, V][], overwrite?: boolean): number { var added = 0; for (var i = 0; i < pairs.length; i++) if (this.set(pairs[i][0], pairs[i][1], overwrite)) added++; return added; } forRange( low: K, high: K, includeHigh: boolean, onFound?: (k: K, v: V, counter: number) => void, initialCounter?: number ): number; /** * Scans the specified range of keys, in ascending order by key. * Note: the callback `onFound` must not insert or remove items in the * collection. Doing so may cause incorrect data to be sent to the * callback afterward. * @param low The first key scanned will be greater than or equal to `low`. * @param high Scanning stops when a key larger than this is reached. * @param includeHigh If the `high` key is present, `onFound` is called for * that final pair if and only if this parameter is true. * @param onFound A function that is called for each key-value pair. This * function can return {break:R} to stop early with result R. * @param initialCounter Initial third argument of onFound. This value * increases by one each time `onFound` is called. Default: 0 * @returns The number of values found, or R if the callback returned * `{break:R}` to stop early. * @description Computational complexity: O(number of items scanned + log size) */ forRange<R = number>( low: K, high: K, includeHigh: boolean, onFound?: (k: K, v: V, counter: number) => { break?: R } | void, initialCounter?: number ): R | number { var r = this._root.forRange( low, high, includeHigh, false, this, initialCounter || 0, onFound ); return typeof r === "number" ? r : r.break!; } /** * Scans and potentially modifies values for a subsequence of keys. * Note: the callback `onFound` should ideally be a pure function. * Specfically, it must not insert items, call clone(), or change * the collection except via return value; out-of-band editing may * cause an exception or may cause incorrect data to be sent to * the callback (duplicate or missed items). It must not cause a * clone() of the collection, otherwise the clone could be modified * by changes requested by the callback. * @param low The first key scanned will be greater than or equal to `low`. * @param high Scanning stops when a key larger than this is reached. * @param includeHigh If the `high` key is present, `onFound` is called for * that final pair if and only if this parameter is true. * @param onFound A function that is called for each key-value pair. This * function can return `{value:v}` to change the value associated * with the current key, `{delete:true}` to delete the current pair, * `{break:R}` to stop early with result R, or it can return nothing * (undefined or {}) to cause no effect and continue iterating. * `{break:R}` can be combined with one of the other two commands. * The third argument `counter` is the number of items iterated * previously; it equals 0 when `onFound` is called the first time. * @returns The number of values scanned, or R if the callback returned * `{break:R}` to stop early. * @description * Computational complexity: O(number of items scanned + log size) * Note: if the tree has been cloned with clone(), any shared * nodes are copied before `onFound` is called. This takes O(n) time * where n is proportional to the amount of shared data scanned. */ editRange<R = V>( low: K, high: K, includeHigh: boolean, onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void, initialCounter?: number ): R | number { var root = this._root; if (root.isShared) this._root = root = root.clone(); try { var r = root.forRange( low, high, includeHigh, true, this, initialCounter || 0, onFound ); return typeof r === "number" ? r : r.break!; } finally { while (root.keys.length <= 1 && !root.isLeaf) this._root = root = root.keys.length === 0 ? EmptyLeaf : ((root as any) as BNodeInternal<K, V>).children[0]; } } /** Same as `editRange` except that the callback is called for all pairs. */ editAll<R = V>( onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void, initialCounter?: number ): R | number { return this.editRange( this.minKey()!, this.maxKey()!, true, onFound, initialCounter ); } /** * Removes a range of key-value pairs from the B+ tree. * @param low The first key scanned will be greater than or equal to `low`. * @param high Scanning stops when a key larger than this is reached. * @param includeHigh Specifies whether the `high` key, if present, is deleted. * @returns The number of key-value pairs that were deleted. * @description Computational complexity: O(log size + number of items deleted) */ deleteRange(low: K, high: K, includeHigh: boolean): number { return this.editRange(low, high, includeHigh, DeleteRange); } /** Deletes a series of keys from the collection. */ deleteKeys(keys: K[]): number { for (var i = 0, r = 0; i < keys.length; i++) if (this.delete(keys[i])) r++; return r; } /** Gets the height of the tree: the number of internal nodes between the * BTree object and its leaf nodes (zero if there are no internal nodes). */ get height(): number { for (var node = this._root, h = -1; node != null; h++) node = (node as any).children; return h; } /** Makes the object read-only to ensure it is not accidentally modified. * Freezing does not have to be permanent; unfreeze() reverses the effect. * This is accomplished by replacing mutator functions with a function * that throws an Error. Compared to using a property (e.g. this.isFrozen) * this implementation gives better performance in non-frozen BTrees. */ /** Scans the tree for signs of serious bugs (e.g. this.size doesn't match * number of elements, internal nodes not caching max element properly...) * Computational complexity: O(number of nodes), i.e. O(size). This method * skips the most expensive test - whether all keys are sorted - but it * does check that maxKey() of the children of internal nodes are sorted. */ checkValid() { var size = this._root.checkValid(0, this); check( size === this.size, "size mismatch: counted ", size, "but stored", this.size ); } } declare const Symbol: any; if (Symbol && Symbol.iterator) // iterator is equivalent to entries() (BTree as any).prototype[Symbol.iterator] = BTree.prototype.entries; (BTree as any).prototype.where = BTree.prototype.filter; (BTree as any).prototype.setRange = BTree.prototype.setPairs; (BTree as any).prototype.add = BTree.prototype.set; function iterator<T>( next: () => { done: boolean; value?: T } = () => ({ done: true, value: undefined, }) ): IterableIterator<T> { var result: any = { next }; if (Symbol && Symbol.iterator) result[Symbol.iterator] = function () { return this; }; return result; } /** Leaf node / base class. **************************************************/ class BNode<K, V> { // If this is an internal node, _keys[i] is the highest key in children[i]. keys: K[]; values: V[]; isShared: true | undefined; get isLeaf() { return (this as any).children === undefined; } constructor(keys: K[] = [], values?: V[]) { this.keys = keys; this.values = values || (undefVals as any[]); this.isShared = undefined; } // Shared methods ///////////////////////////////////////////////////////// maxKey() { return this.keys[this.keys.length - 1]; } // If key not found, returns i^failXor where i is the insertion index. // Callers that don't care whether there was a match will set failXor=0. indexOf(key: K, failXor: number, cmp: (a: K, b: K) => number): index { // TODO: benchmark multiple search strategies const keys = this.keys; var lo = 0, hi = keys.length, mid = hi >> 1; while (lo < hi) { var c = cmp(keys[mid], key); if (c < 0) lo = mid + 1; else if (c > 0) // key < keys[mid] hi = mid; else if (c === 0) return mid; else { // c is NaN or otherwise invalid if (key === key) // at least the search key is not NaN return keys.length; else throw new Error("BTree: NaN was used as a key"); } mid = (lo + hi) >> 1; } return mid ^ failXor; // Unrolled version: benchmarks show same speed, not worth using /*var i = 1, c: number = 0, sum = 0; if (keys.length >= 4) { i = 3; if (keys.length >= 8) { i = 7; if (keys.length >= 16) { i = 15; if (keys.length >= 32) { i = 31; if (keys.length >= 64) { i = 127; i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 64 : -64; sum += c; i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 32 : -32; sum += c; } i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 16 : -16; sum += c; } i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 8 : -8; sum += c; } i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 4 : -4; sum += c; } i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 2 : -2; sum += c; } i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 1 : -1; c = i < keys.length ? cmp(keys[i], key) : 1; sum += c; if (c < 0) { ++i; c = i < keys.length ? cmp(keys[i], key) : 1; sum += c; } if (sum !== sum) { if (key === key) // at least the search key is not NaN return keys.length ^ failXor; else throw new Error("BTree: NaN was used as a key"); } return c === 0 ? i : i ^ failXor;*/ } // Leaf Node: misc ////////////////////////////////////////////////////////// minKey() { return this.keys[0]; } clone(): BNode<K, V> { var v = this.values; return new BNode<K, V>( this.keys.slice(0), v === undefVals ? v : v.slice(0) ); } greedyClone(force?: boolean): BNode<K, V> { return this.isShared && !force ? this : this.clone(); } get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined { var i = this.indexOf(key, -1, tree._compare); return i < 0 ? defaultValue : this.values[i]; } checkValid(depth: number, tree: BTree<K, V>): number { var kL = this.keys.length, vL = this.values.length; check( this.values === undefVals ? kL <= vL : kL === vL, "keys/values length mismatch: depth", depth, "with lengths", kL, vL ); // Note: we don't check for "node too small" because sometimes a node // can legitimately have size 1. This occurs if there is a batch // deletion, leaving a node of size 1, and the siblings are full so // it can't be merged with adjacent nodes. However, the parent will // verify that the average node size is at least half of the maximum. check(depth == 0 || kL > 0, "empty leaf at depth", depth); return kL; } // Leaf Node: set & node splitting ////////////////////////////////////////// set( key: K, value: V, overwrite: boolean | undefined, tree: BTree<K, V> ): boolean | BNode<K, V> { var i = this.indexOf(key, -1, tree._compare); if (i < 0) { // key does not exist yet i = ~i; tree._size++; if (this.keys.length < tree._maxNodeSize) { return this.insertInLeaf(i, key, value, tree); } else { // This leaf node is full and must split var newRightSibling = this.splitOffRightSide(), target: BNode<K, V> = this; if (i > this.keys.length) { i -= this.keys.length; target = newRightSibling; } target.insertInLeaf(i, key, value, tree); return newRightSibling; } } else { // Key already exists if (overwrite !== false) { if (value !== undefined) this.reifyValues(); // usually this is a no-op, but some users may wish to edit the key this.keys[i] = key; this.values[i] = value; } return false; } } reifyValues() { if (this.values === undefVals) return (this.values = this.values.slice(0, this.keys.length)); return this.values; } insertInLeaf(i: index, key: K, value: V, tree: BTree<K, V>) { this.keys.splice(i, 0, key); if (this.values === undefVals) { while (undefVals.length < tree._maxNodeSize) undefVals.push(undefined); if (value === undefined) { return true; } else { this.values = undefVals.slice(0, this.keys.length - 1); } } this.values.splice(i, 0, value); return true; } takeFromRight(rhs: BNode<K, V>) { // Reminder: parent node must update its copy of key for this node // assert: neither node is shared // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize) var v = this.values; if (rhs.values === undefVals) { if (v !== undefVals) v.push(undefined as any); } else { v = this.reifyValues(); v.push(rhs.values.shift()!); } this.keys.push(rhs.keys.shift()!); } takeFromLeft(lhs: BNode<K, V>) { // Reminder: parent node must update its copy of key for this node // assert: neither node is shared // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize) var v = this.values; if (lhs.values === undefVals) { if (v !== undefVals) v.unshift(undefined as any); } else { v = this.reifyValues(); v.unshift(lhs.values.pop()!); } this.keys.unshift(lhs.keys.pop()!); } splitOffRightSide(): BNode<K, V> { // Reminder: parent node must update its copy of key for this node var half = this.keys.length >> 1, keys = this.keys.splice(half); var values = this.values === undefVals ? undefVals : this.values.splice(half); return new BNode<K, V>(keys, values); } // Leaf Node: scanning & deletions ////////////////////////////////////////// forRange<R>( low: K, high: K, includeHigh: boolean | undefined, editMode: boolean, tree: BTree<K, V>, count: number, onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void ): EditRangeResult<V, R> | number { var cmp = tree._compare; var iLow, iHigh; if (high === low) { if (!includeHigh) return count; iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1; if (iLow < 0) return count; } else { iLow = this.indexOf(low, 0, cmp); iHigh = this.indexOf(high, -1, cmp); if (iHigh < 0) iHigh = ~iHigh; else if (includeHigh === true) iHigh++; } var keys = this.keys, values = this.values; if (onFound !== undefined) { for (var i = iLow; i < iHigh; i++) { var key = keys[i]; var result = onFound(key, values[i], count++); if (result !== undefined) { if (editMode === true) { if (key !== keys[i] || this.isShared === true) throw new Error("BTree illegally changed or cloned in editRange"); if (result.delete) { this.keys.splice(i, 1); if (this.values !== undefVals) this.values.splice(i, 1); tree._size--; i--; iHigh--; } else if (result.hasOwnProperty("value")) { values![i] = result.value!; } } if (result.break !== undefined) return result; } } } else count += iHigh - iLow; return count; } /** Adds entire contents of right-hand sibling (rhs is left unchanged) */ mergeSibling(rhs: BNode<K, V>, _: number) { this.keys.push.apply(this.keys, rhs.keys); if (this.values === undefVals) { if (rhs.values === undefVals) return; this.values = this.values.slice(0, this.keys.length); } this.values.push.apply(this.values, rhs.reifyValues()); } } /** Internal node (non-leaf node) ********************************************/ class BNodeInternal<K, V> extends BNode<K, V> { // Note: conventionally B+ trees have one fewer key than the number of // children, but I find it easier to keep the array lengths equal: each // keys[i] caches the value of children[i].maxKey(). children: BNode<K, V>[]; constructor(children: BNode<K, V>[], keys?: K[]) { if (!keys) { keys = []; for (var i = 0; i < children.length; i++) keys[i] = children[i].maxKey(); } super(keys); this.children = children; } clone(): BNode<K, V> { var children = this.children.slice(0); for (var i = 0; i < children.length; i++) children[i].isShared = true; return new BNodeInternal<K, V>(children, this.keys.slice(0)); } greedyClone(force?: boolean): BNode<K, V> { if (this.isShared && !force) return this; var nu = new BNodeInternal<K, V>( this.children.slice(0), this.keys.slice(0) ); for (var i = 0; i < nu.children.length; i++) nu.children[i] = nu.children[i].greedyClone(); return nu; } minKey() { return this.children[0].minKey(); } get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined { var i = this.indexOf(key, 0, tree._compare), children = this.children; return i < children.length ? children[i].get(key, defaultValue, tree) : undefined; } checkValid(depth: number, tree: BTree<K, V>): number { var kL = this.keys.length, cL = this.children.length; check( kL === cL, "keys/children length mismatch: depth", depth, "lengths", kL, cL ); check(kL > 1, "internal node has length", kL, "at depth", depth); var size = 0, c = this.children, k = this.keys, childSize = 0; for (var i = 0; i < cL; i++) { size += c[i].checkValid(depth + 1, tree); childSize += c[i].keys.length; check(size >= childSize, "wtf"); // no way this will ever fail check( i === 0 || c[i - 1].constructor === c[i].constructor, "type mismatch" ); if (c[i].maxKey() != k[i]) check( false, "keys[", i, "] =", k[i], "is wrong, should be ", c[i].maxKey(), "at depth", depth ); if (!(i === 0 || tree._compare(k[i - 1], k[i]) < 0)) check( false, "sort violation at depth", depth, "index", i, "keys", k[i - 1], k[i] ); } var toofew = childSize < (tree.maxNodeSize >> 1) * cL; if (toofew || childSize > tree.maxNodeSize * cL) check( false, toofew ? "too few" : "too many", "children (", childSize, size, ") at depth", depth, ", maxNodeSize:", tree.maxNodeSize, "children.length:", cL ); return size; } // Internal Node: set & node splitting ////////////////////////////////////// set( key: K, value: V, overwrite: boolean | undefined, tree: BTree<K, V> ): boolean | BNodeInternal<K, V> { var c = this.children, max = tree._maxNodeSize, cmp = tree._compare; var i = Math.min(this.indexOf(key, 0, cmp), c.length - 1), child = c[i]; if (child.isShared) c[i] = child = child.clone(); if (child.keys.length >= max) { // child is full; inserting anything else will cause a split. // Shifting an item to the left or right sibling may avoid a split. // We can do a shift if the adjacent node is not full and if the // current key can still be placed in the same node after the shift. var other: BNode<K, V>; if ( i > 0 && (other = c[i - 1]).keys.length < max && cmp(child.keys[0], key) < 0 ) { if (other.isShared) c[i - 1] = other = other.clone(); other.takeFromRight(child); this.keys[i - 1] = other.maxKey(); } else if ( (other = c[i + 1]) !== undefined && other.keys.length < max && cmp(child.maxKey(), key) < 0 ) { if (other.isShared) c[i + 1] = other = other.clone(); other.takeFromLeft(child); this.keys[i] = c[i].maxKey(); } } var result = child.set(key, value, overwrite, tree); if (result === false) return false; this.keys[i] = child.maxKey(); if (result === true) return true; // The child has split and `result` is a new right child... does it fit? if (this.keys.length < max) { // yes this.insert(i + 1, result); return true; } else { // no, we must split also var newRightSibling = this.splitOffRightSide(), target: BNodeInternal<K, V> = this; if (cmp(result.maxKey(), this.maxKey()) > 0) { target = newRightSibling; i -= this.keys.length; } target.insert(i + 1, result); return newRightSibling; } } insert(i: index, child: BNode<K, V>) {