UNPKG

rag-cli-tester

Version:

A lightweight CLI tool for testing RAG (Retrieval-Augmented Generation) systems with different embedding combinations

42 lines 1.71 kB
import { EmbeddingConfig, ColumnCombination } from './types'; export interface EmbeddingResult { id: string; combination: ColumnCombination; embedding: number[]; context: string; targetValue: any; metadata: Record<string, any>; } export interface TrainingData { embeddings: EmbeddingResult[]; combination: ColumnCombination; totalRows: number; } export interface PipelineProvider { createPipeline(task: string, model: string): Promise<any>; } export declare class TransformersPipelineProvider implements PipelineProvider { createPipeline(task: string, model: string): Promise<any>; } export declare class EmbeddingGenerator { private config; private embeddingPipeline; private pipelineProvider; constructor(config: EmbeddingConfig, pipelineProvider?: PipelineProvider); initialize(): Promise<void>; generateColumnCombinations(columns: string[], maxCombinations?: number): ColumnCombination[]; private getCombinations; generateEmbedding(text: string): Promise<number[]>; createContext(row: Record<string, any>, combination: ColumnCombination): string; processTrainingData(data: Record<string, any>[], combination: ColumnCombination, targetColumn: string, idColumn?: string): Promise<TrainingData>; calculateCosineSimilarity(a: number[], b: number[]): number; findBestMatch(queryEmbedding: number[], trainingData: TrainingData, topK?: number): Promise<{ result: EmbeddingResult; similarity: number; }[]>; processQuery(query: string, trainingData: TrainingData, topK?: number): Promise<{ result: EmbeddingResult; similarity: number; }[]>; } //# sourceMappingURL=embeddings.d.ts.map