UNPKG

queue-typed

Version:
281 lines (222 loc) 7.83 kB
![NPM](https://img.shields.io/npm/l/queue-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/queue-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/queue-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/queue-typed) ![npm](https://img.shields.io/npm/v/queue-typed) # What ## Brief In the usual gig, we make do with Array.push and Array.shift to play Queue in JavaScript, but here's the kicker – native JavaScript Array isn't exactly Queue VIP. That shift move? It's a bit of a slow dance with a time complexity of [linear time complexity](https://medium.com/@ariel.salem1989/an-easy-to-use-guide-to-big-o-time-complexity-5dcf4be8a444#:~:text=O(N)%E2%80%94Linear%20Time) *O(n)*. When you're working with big data, you don't want to be caught slow-shifting. So, we roll up our sleeves and craft a Queue that's got a speedy [constant time complexity](https://medium.com/@ariel.salem1989/an-easy-to-use-guide-to-big-o-time-complexity-5dcf4be8a444#:~:text=O(1)%20%E2%80%94%20Constant%20Time) O(1) Queue.enqueue(), a snappy O(1) Queue.dequeue(), and a lightning-fast O(1) Queue.getAt(). Yep, it's Queue-tastic! <table> <thead> <tr><th>Data Structure</th><th>Enqueue</th><th>Dequeue</th><th>Access</th><th>Enqueue & Dequeue 100000</th><th>Access 100000</th></tr> </thead> <tbody> <tr><td>Queue Typed</td><td>O(1)</td><td>O(1)</td><td>O(1)</td><td>22.60ms</td><td>10.60ms</td></tr> <tr><td>JavaScript Native Array</td><td>O(1)</td><td>O(n)</td><td>O(1)</td><td>931.10ms</td><td>8.60ms</td></tr> <tr><td>Other Queue</td><td>O(1)</td><td>O(1)</td><td>O(n)</td><td>28.90ms</td><td>17175.90ms</td></tr> </tbody> </table> ## more data structures This is a standalone Queue data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i queue-typed --save ``` ### yarn ```bash yarn add queue-typed ``` ### snippet #### TS ```typescript import {Queue} from 'queue-typed'; // /* or if you prefer */ import {Queue} from 'queue-typed'; const queue = new Queue<number>(); for (let i = 0; i < magnitude; i++) { queue.enqueue(i); } for (let i = 0; i < magnitude; i++) { queue.dequeue(); } for (let i = 0; i < magnitude; i++) { console.log(queue.getAt(i)); // 0, 1, 2, 3, ... } ``` #### JS ```javascript const {Queue} = require('queue-typed'); // /* or if you prefer */ const {Queue} = require('queue-typed'); const queue = new Queue(); for (let i = 0; i < magnitude; i++) { queue.enqueue(i); } for (let i = 0; i < magnitude; i++) { queue.dequeue(); } for (let i = 0; i < magnitude; i++) { console.log(queue.getAt(i)); // 0, 1, 2, 3, ... } ``` [//]: # (No deletion!!! Start of Example Replace Section) ### Sliding Window using Queue ```typescript const nums = [2, 3, 4, 1, 5]; const k = 2; const queue = new Queue<number>(); let maxSum = 0; let currentSum = 0; nums.forEach(num => { queue.push(num); currentSum += num; if (queue.length > k) { currentSum -= queue.shift()!; } if (queue.length === k) { maxSum = Math.max(maxSum, currentSum); } }); console.log(maxSum); // 7 ``` ### Breadth-First Search (BFS) using Queue ```typescript const graph: { [key in number]: number[] } = { 1: [2, 3], 2: [4, 5], 3: [], 4: [], 5: [] }; const queue = new Queue<number>(); const visited: number[] = []; queue.push(1); while (!queue.isEmpty()) { const node = queue.shift()!; if (!visited.includes(node)) { visited.push(node); graph[node].forEach(neighbor => queue.push(neighbor)); } } console.log(visited); // [1, 2, 3, 4, 5] ``` [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>Queue</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/Queue.html"><span>Queue</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>Queue&lt;E&gt;</td> <td>queue&lt;T&gt;</td> <td>Queue&lt;E&gt;</td> <td>-</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>queue</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>1,000,000 push</td><td>39.90</td><td>25.07</td><td>0.01</td></tr><tr><td>1,000,000 push & shift</td><td>81.79</td><td>12.23</td><td>0.00</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>